Scrutinizing WPA2 Password Generating Algorithms in Wireless Routers

Eduardo Novella Lorente
The Kerckhoffs Institute
Radboud University, The Netherlands.

ednolo@alumni.upv.es

Carlo Meijer
The Kerckhoffs Institute
Radboud University, The Netherlands.

carlo@youcontent.nl

Roel Verdult
Institute for Computing and Information Sciences
Radboud University, The Netherlands.

rverdult@cs.ru.nl

Abstract

A wireless router is a networking device that enables a
user to set up a wireless connection to the Internet. A
router can offer a secure channel by cryptographic means
which provides authenticity and confidentiality. Nowa-
days, almost all routers use a secure channel by default
that is based on Wi-Fi Protected Access II (WPA2). This
is a security protocol which is believed not to be sus-
ceptible to practical key recovery attacks. However, the
passwords should have sufficient entropy to avert brute-
force attacks.

In this paper, we compose a strategy on how to
reverse-engineer embedded routers. Furthermore, we de-
scribe a procedure that can instantly gather a complete
wireless authentication trace which enables an offline
password recovery attack. Finally, we present a number
of use cases where we identify extremely weak password
generating algorithms in various routers which are mas-
sively deployed in The Netherlands.

The algorithms are used to generate the default WPA?2
password. Such a password is loaded during device ini-
tialization and hardware reset. Users that did not explic-
itly change their wireless password are most likely vul-
nerable to practical attacks which can recover their pass-
word within minutes. A stolen password allows an ad-
versary to abuse someone else’s internet connection, for
instance compromising the firewall, making a fraudulent
transaction or performing other criminal activities.

Together with the Dutch National Cyber Security Cen-
tre we have initiated a responsible disclosure procedure.
However, since these routers are also used by many other
companies in various countries, our findings seem to re-
late an international industry wide security issue.

1 Introduction

Most people use various devices at home to connect to
the Internet. Examples of such devices include comput-
ers, phones, tablets, e-readers and smart-TV’s. Nowa-
days, the majority of these devices use a wireless net-

work interface and connect to a wireless base station
(router) that gives access to the Internet. Such a router
often serves as a firewall and is the first line of defence
against malicious intruders that are active on the Internet.
The user’s devices operate in a internal network environ-
ment, the Local Area Network (LAN), which is separated
by the router to protect against outside traffic, the Wide
Area Network (WAN).

To gain access to a protected wireless LAN interface,
the user needs to provide a WPA2 password (the wireless
key). Such a password is often printed on a sticker which
is attached on the bottom of a router. An example of such
sticker is shown in Figure 1.

SSID (Network Name): BD3EAC

WPA/WPA2 (Wireless Key):

CERTIFIED

i C € © X mmmmm

S/N: 016182

Figure 1: Sticker on the bottom of a wireless router.

The WPA2 password is used to perform mutual au-
thentication between the user’s device and the router. To
sufficiently protect a wireless network, the router needs
to be configured with a strong (randomly) chosen pass-
word that consists of a large number of characters to
provide sufficient entropy [1]. Without a strong pass-
word the router is susceptible to brute-force attacks. Al-
though it is often possible to change the password in the
web-interface of the router, it is a bit of a hassle, espe-
cially when the router is regularly (remotely) reset where
its settings return to the factory defaults. Subsequently,
since the password that is printed on the sticker often
looks very complicated (a lot of seemingly random char-
acters), the user may be under the impression that is se-
cure to leave the default password in place. We discov-
ered that for Dutch routers this is not the case.

This paper contains a security analysis of WPA2 pass-
word generating algorithms that are used in many Dutch
wireless routers. The major Telecom Companies (Tel-

cos) and Internet Service Providers (ISPs) in The Nether-
lands directly supply their customers with an (ASDL or
Cable) Internet modem. Nowadays, almost all modems
have the wireless router functionality embedded into the
device. Therefore, these routers are currently massively
deployed and used in The Netherlands.

We discovered that the tested routers generate wireless
passwords by applying insecure proprietary obfuscation
algorithms. The algorithms utilized in Dutch routers gen-
erate easy to predict network names and weak wireless
passwords. The output is derived from public or pre-
dictable information such as broadcast messages and (in-
cremental) serial numbers. Moreover, we verified with
practical experiments that the WPA?2 password of routers
that utilize such password generating functions can be
recovered within minutes.

Impact We have carried out invasive attacks to reverse
engineer several wireless routers and concluded that the
default wireless keys are trivial to recover, taken into ac-
count that an adversary has access to the algorithm. In
the research, we have successfully recovered the propri-
etary algorithms from several major Dutch Telcos and
ISPs. An adversary can mount practical attacks against
those wireless networks to recover the password within
minutes and use the compromised internet connection for
fraudulent activity. Possible abuses include: stealing sen-
sitive information, manipulating online electronic bank
activity, infect client’s computers with malware or sim-
ply commit digital crimes through the Internet connec-
tion of the customer such as downloading child pornog-
raphy.

Although we have limited our research to analyzing
the security of Dutch wireless routers, we have strong in-
dications that many more routers are affected worldwide.
Especially, since the same routers are being used by a
number of other Telcos and ISPs in various countries.

Contribution The contribution of this paper is mani-
fold. First, we show how a malicious adversary can in-
stantly force a client to (re-)authenticate with the router.
This allows the interception of a complete successful au-
thentication trace. Such a trace can be used to offline ver-
ify a router password candidate and quickly eliminates
false positives. Then, we present a general methodol-
ogy how we recovered custom and proprietary hash al-
gorithms from several Dutch routers. We expect that our
method enables fellow researches and computer security
experts to perform a similar risk analysis of the wireless
router infrastructure in their country. Finally, we present
use cases which practically demonstrate the insecurity of
a number routers which are currently deployed by mil-
lions of users.

Responsible Disclosure We have strictly followed the
responsible disclosure guidelines of the Dutch govern-

ment [2]. These guidelines propose that the correspond-
ing vendors be informed six months prior to full disclo-
sure, giving them ample time to resolve the issues, in-
form their customers and hence preventing widespread
abuse. We informed the Dutch government as well as
all major Telcos and ISPs in the Netherlands in an early
stage about the finding in our research. Consequently we
are currently coordinating a national notification to the
general public together with the Dutch National Cyber
Security Centre (NCSC), formerly known as GovCERT,
which is part of the Dutch Ministry of Security and Jus-
tice.

Overview The remainder of this paper is organized as
follows: The related work is outlined in Section 2. Sec-
tion 3 presents the technical background which intro-
duces the techniques used later in this paper. Next, we
present a general router security analysis methodology in
Section 4. Five concrete use cases of router security anal-
ysis are presented in Section 5. Then, we evaluate several
mitigating measures and possible solutions in Section 6.
Finally, the conclusion of our study is given in Section 7.

2 Related work

This section contains the related work to our research.
We have not limited ourselves to refer only to the aca-
demic literature. The reason for this is purely practi-
cal. Most of the related research is published in blog
posts which are scattered over the Internet. This section
starts with a general overview of wireless security issues.
Then, it addresses related research about password gen-
erating algorithms. Finally, it gives a quick overview of
related reverse-engineering projects which also analyzed
the security of wireless routers.

2.1 Wireless security

There are several protection mechanisms introduced in
the last few decades, including the well-known and
widely deployed techniques Wired Equivalent Privacy
(WEP), Wi-Fi Protected Access (WPA) and Wi-Fi Pro-
tected Access II (WPA2). The first two techniques are
known to be vulnerable to several attacks [3, 4, 5, 6,7, 8,
9,10, 11, 12, 13, 14, 15]. Recently, there are also some
issues identified regarding WPA2 [16, 17, 18]. However,
as far as the authors know, there is currently no practical
password recovery attack proposed in the literature that
can be mounted against the WPA2 protocol.

Some wireless routers support the Wi-Fi Protected
Setup (WPS) authentication protocol. It enables a com-
puter to connect with the wireless network by entering a
single 8-digits PIN code instead of a long wireless pass-
word. The WPS protocol itself is vulnerable to a on-
line practical brute-force attack. Suck attack can retrieve
the PIN code from a WPS enabled router within a few
hours [19] or in a few seconds when weak Pseudo Ran-

dom Number Generators (PRNG) are used to initialize
the credentials [20]. However, modern routers have ef-
fective countermeasures against such attacks. Examples
include a physical button that enables WPS for only one
minute and a limited number of sequential failed authen-
tication attempts.

2.2 Password generating algorithms

There were a number of incidents in the last decade
that concerned insecure WPA?2 password generating al-
gorithms in routers. However, there is no general study
published in the literature that addresses this issue specif-
ically. Most of the incidents were made public in Internet
blog posts or in Common Vulnerabilities and Exposures
(CVE) reports.

The publication of the Thomson routers [21] had a se-
rious impact for major ISP that is active in The Nether-
lands. In 2008, the ISP had massively deployed the
vulnerable Thomson Speedtouch 780 router. After pro-
actively informing their customers the ISP has now re-
placed most of these vulnerable routers.

Similar issues exist with routers from ADB / Pirelli.
Several recent studies [22, 23, 24, 25, 26, 27] show that
it is trivial to recover the default WPA2 password. Fur-
thermore, issues were found in Comtrend routers [28]
that are used by a large Spanish ISP. The researchers
claim to have notified the manufacturer and ISP about
these issues more than five years ago. However, it seems
that these vulnerable routers are still actively being used
in Spain. Then, issues exist within Arcadyan routers.
A forum post from 2011 [29] points out that the pass-
word generating function is actually published in the
form of a patent [30]. After the discovery, several vari-
ants of this algorithm were identified in other Arcadyan
routers [31, 32, 33]. Finally, a number of consumer
routers exist containing weak password generating algo-
rithms [34, 35, 36, 37, 38, 39, 40]. Most of these con-
sumer routers are currently still being sold in common
consumer electronics stores.

2.3 Reverse-engineering routers
We identified several publicly available blog posts
that specifically focus on reverse-engineering wireless
routers [41, 42, 37, 32]. We have generalized their tech-
niques and approaches in our methodology and use them
to structure our analysis phase.

In this study we use non-invasive to invasive meth-
ods [43, 44] to recover the firmwares of the routers.
The methods we used are de-
scribed in detail in Section 4.1.
Furthermore, publicly avail
able tutorials demonstrate how "
to interface embedded hard-
ware without requiring expen-
sive lab equipment [45, 46, 47].

Figure 2: Bus Pirate.

Such methods include the JTAG debugger [48] and serial
communication peripherals [49]. Most of these firmware
recovery techniques can be carried out by using the Bus
Pirate [50], shown in Figure 2, which is an off-the-shelf
open hardware device that costs only USD $30. It sup-
ports a variety of communication buses and hardware
protocols such as I12C, SPI, IWIRE, UART and JTAG.

3 Introduction to WPA2

The WPA2 protocol can be set up in Enterprise or Per-
sonal mode. Enterprise mode uses a 802.1x RADIUS
server for the authentication process whereas WPA2 per-
sonal uses a pre-shared key (PSK). Domestic networks
normally use WPA2 personal. Unlike RADIUS server’s
online authentication, WPA2 personal does not rely on
a Diffie-Hellman key exchange, however the shared se-
cret must be previously established between the two par-
ties using a separate channel. In this section we first
introduce the key derivation of the WPA2-PSK proto-
col. Then, we explain how the mutual authentication is
performed. Finally, we describe the deauthentication re-
quest that is included in the WPA2 protocol.

3.1 WPA2 key derivation

WPA2-PSK uses the key derivation function called
PBKDF2 (Password-Based Key Derivation Function
2) [51] to compute the shared secret key PMK. The
PBKDF2 function requires the following input:

Derived Key = PBKDF?2 (
pseudo random function,
password,
salt,
iterations,
derived key length

PBKDF2 combines the password pw and the wireless
network identifier ssid as cryptographic salt to iterate a
certain amount of times until obtain a derived key called
Pairwise Master Key (PMK). WPA2 applies the function
4096 iterations to generate a 256 bits key by computing
a HMAC-SHALI of the passphrase and ssid.

| PMK = PBKDF2(HMAC_SHAL1, pw,ssid,4096,256)|

3.2 WPA2 authentication

Once this PMK is generated with the shared secret in
both sides of the communication, a 4-way handshake
which performs mutual authentication that proofs both
sides have access to the shared secret PMK, see [52] for
more details. A simplified overview of the authentication
procedure is shown in Figure 3.

Once authenticated, the WPA2 protocol uses the Ad-
vanced Encryption Standard (AES) [53] in CCM encryp-

Computer C Router R

Authentication challenge C

Authentication challenge R, response C

Authentication response R

Authentication Acknowledge

Authenticated Authenticated

Encrypted communication

Figure 3: Simplified WPA?2 authentication [52].

tion mode [54, 55] as specified in [52] to protect the
confidentiality and authenticity of the messages that are
transmitted between the computer and the router.

3.3 WPA2 deauthentication

The WPA?2 protocol suffers, just like many other 802.11-
based networks, from a serious security weakness. These
protocols support a deauthentication (and deassociation)
request which allows an entity to gracefully disconnect
from the wireless network. Moreover, to let computers to
disconnect which do not have the correct cryptographic
credentials (or became out-of-sync), the deauthentication
packet is not cryptographically protected in any kind.
Such a feature can be convenient to use from an engi-
neering perspective. However, it also introduces a seri-
ous security issue since it allows an adversary to mount
a deauthentication attack to instantly gather all the infor-
mation that is required to recover the wireless password.
The problem was first discussed in [56] and later further
analyzed in [57]. Figure 4 shows a simplified procedure
that an adversary would perform to mount a deauthenti-
cation attack.

Computer C Adversary A

Encrypted cdmmunication

Router R

Deauthentication notification

Deauthenticated

Authentication challenge C

Authentication challenge R, response C

Authentication response R

Authentication Acknowledge

Authenticated Authenticated

Encrypted communication

Figure 4: Deauthentication of WPA2 connection.

During an deautentication attack the adversary imper-
sonates the router and transmits a deauthentication noti-
fication to the client. A plaintext packet is injected at an
arbitrary time by the adversary without any knowledge

of the shared secret PMK. The only requirement is that
the adversary needs to spoof the network MAC address
of the router, which is a trivial exercise. Additionally,
the MAC address of the client has to be known since it
is used as the destination address of the deauthentica-
tion packet. However, some clients will even accept the
packet in case it is sent to the broadcast address.

After receiving the packet, a client will immedi-
ately terminate the connection to the router. The client
will then automatically re-connect and authenticate it-
self again. The adversary now simply records the 4-way
handshake. This handshake can be used later to perform
an offline key recovery attack.

There are currently a few open-source attack tools
available that can forge and inject a deauthentication
packet into an active wireless connection between a com-
puter and a router [58, 59, 60]. Furthermore, there are
several publicly available tutorials show how such an at-
tack can be executed in practice with the use of only or-
dinary consumer hardware [61, 62, 63, 64, 65].

4 Methodology

In this section we will go over the steps of obtaining the
WPA?2 default key generating algorithm from a router.

4.1 Obtaining the firmware

There are a number of ways to recover the embedded
firmware of a router. They mostly vary in invasiveness
and difficulty.

4.1.1 Downloading from the manufacturer’s web-
site

Obtaining the firmware can be as simple as visiting the
manufacturer’s website, selecting the router model, and
downloading the image. Though this is typically not
the case for routers deployed by ISPs. For such routers
there seems to be a general reluctance against offering
firmware images for download. Though this may ham-
per an adversary in obtaining the firmware and eventually
the WPA?2 default key generating algorithm, it is not to be
considered a proper defense strategy, as will be demon-
strated in the next sections.

4.1.2 Interfacing the router’s serial console
Most routers offer a serial interface that allows to de-
bug the device to some extent. The capabilities offered
through the serial interface vary greatly. Hence, it is not
always a useful strategy to obtain the firmware.

Serial interfaces can usually be identified by 4 lined-
up pins, from which one of the outer pins connects to the
ground. Most of the routers we encountered, the serial
interface was not populated, requiring us to solder a 4-
pin header onto it. In the case the serial interface is not
found by inspecting the PCB, an online search may be
performed. The OpenWRT wiki [66] is usually a good
place to look for information such as where the serial in-

terface resides. Alternatively, a search for a datasheet of
the System-on-Chip (SoC) may be performed, identify-
ing which pins are the serial interface and subsequently
inspecting the board in an attempt to discover where they
are connected to. Once the serial interface is identified, a
TTL-to-USB converter can be used to communicate with
it.

Once communication is established between the PC
and the router via the serial interface, the next step is to
identify the capabilities the device offers over the serial
interface. Typically, once the router is booted, it only
outputs diagnostic logs, and does not offer the capability
to send commands. However, when the router is boot-
ing, it is very typical that the device’s boot loader offers
a way to interrupt the normal boot sequence over the se-
rial console, e.g. by pressing a key before a timer expires.
The options offered to the serial console user differ from
boot loader to boot loader, although they usually include
downloading a new firmware image over the TFTP pro-
tocol and either flashing it or booting it directly, without
performing a flash operation. Some boot loaders even
allow to make a backup of the flash chip, meaning our
quest to obtaining the firmware ends here.

If this is not the case, an attempt may be made to craft
an image that the boot loader will accept and boot. Once
the boot loader accepts the image, code execution is ob-
tained on the router, hence full control over the router is
obtained, including the ability to dump its flash. How-
ever, this is only possible in case the image format has
been documented, either by the manufacturer or through
reverse engineering, and does not require the manufac-
turer to include a cryptographic signature based on asym-
metric cryptography (such as RSA or elliptic curves). It
is likely that this is the case when the router is supported
by OpenWRT, DDWRT, or a similar open source after
market firmware. Although it is generally feasible to
craft such an image, it is very likely easier to obtain code
execution by debugging the router with a JTAG interface.

4.1.3 Debugging the router with JTAG

Most SoCs offer debugging capabilities through JTAG.
However, in our experiments we typically do not en-
counter the JTAG pins being connected on the PCB. Sim-
ilar to finding the serial interface, the JTAG interface may
be found by visually inspecting the PCB. The existence
of 10, 14 or 20 pins placed together is usually a strong
indicator of a JTAG header. As with the serial interface,
a description of where the JTAG pins can be found on
the PCB may be found online or by using a datasheet. In
the case the JTAG pins cannot be identified, automated
techniques exist that identify the JTAG pins by taking a
“brute-force” approach. Such techniques can be imple-
mented in Arduino devices [67]. Alternatively, a device
designed for this specific purpose exists [68]. The tech-

nique identifies pins and enumerates undocumented op-
codes from test points and/or component pads.

Once the JTAG interface is identified, a hardware de-
bugger can be used to communicate with the micro-
controller. A JTAG debugger comes as cheap as $6 USD.

Once the router is connected through the JTAG inter-
face, control over its execution may be obtained. For
example, register values can be inspected/manipulated,
breakpoints can be set, code and/or data in RAM can be
inspected/manipulated, etc. In case the debugging soft-
ware used properly supports the flash chip, it is possible
to read it out directly. If this is not the case, it may be
possible to extend the debugging software to support this
particular flash chip. Alternatively, the code within the
firmware that is used to read from the flash chip may be
recycled for our goal of reading it out entirely. As a final
option, we may simply dump the contents of the RAM
while the router is up and running. It is very typical for
firmware of embedded devices to be loaded in its entirety
in RAM upon boot, hence it is very likely to hold the
entire firmware, hence also holding WPA?2 default key
generating algorithm.

4.1.4 Exploiting a known vulnerability

Sometimes routers run a firmware for which a known
vulnerability exists that allows us to gain control over its
execution. If this is the case, we may be able to exploit
it and use the firmware’s internal capabilities to create a
backup of its software and transfer it over the wire. The
easiest way may be an OS command injection, buffer
overflows in the web server or other services exposed
over the network such as telnet, FTP, TFTP, etc.

4.1.5 Desoldering the flash chip

In the case none of the methods posed above work, a
rather invasive method way of obtaining the firmware
may be used: by desoldering the flash chip and extract-
ing its contents with an EEPROM reader. It requires a
chip programmer that costs a few hundred dollars and the
router will most likely be destroyed in the process. How-
ever, it is a very reliable way of obtaining the firmware
in the sense that it almost always works: unless a router
manufacturer resorts to very drastic measures such as
hardware encryption with a per-device key, the firmware
can be recovered by desoldering the flash chip.

4.2 Decompressing and de-obfuscating

Once the firmware image is obtained, a typical first step
would be to decompress it. In order to do so, a strategy
that worked very well during our experiments is to at-
tempt to pinpoint signatures of a number of well-known
compression formats, such as GZIP or LZMA, and at-
tempt to decompress starting from that offset. In case
this does not work, we may be able to find documentation
on this topic online. Usually with Linux-based devices,

the image contains a SquashFS filesystem, which is used
as the root filesystem. Since version 4.0, SquashFS sup-
ports LZMA compression. Router manufacturers typi-
cally also use LZMA in SquashFS versions prior to 4.0.
They do so by means of adding proprietary extensions
to the SquashFS code. Therefore, in order to success-
fully extract the root filesystem, we need to these exten-
sions into account. Fortunately, the General Public Li-
cense, under which the SquashFS code is licensed, re-
quires the manufacturer to release the source code of
these extensions. Hence, all the tools required to extract
the root filesystem should be offered by the manufacturer
for download.

It happens that router manufacturers also add an ob-
fuscation layer. However, by design, the router’s CPU
needs to be able to decompress/de-obfuscate the code
prior to being able to execute it. Typically, a software
routine is present in the boot loader that does this, which
may or may not be present in a firmware update im-
age. In order to remove the obfuscation layer, the routine
implementing the de-obfuscation either has to either be
run in an emulator or be reverse engineered. Although
it adds difficulty to the process of eventually obtaining
the WPA?2 default key generating algorithm, it will cer-
tainly not stop a dedicated attacker. On top of that, many
the obfuscation algorithms have been published online,
hence completely defeating the purpose of the obfus-
cation [41, 69]. Alternatively, the router manufacturer
could add hardware that performs the decompression and
de-obfuscation, although this adds additional manufac-
turing costs and the gain in additional security is ques-
tionable. We have not encountered such hardware pro-
tection in any of the routers we experimented with.

4.3 Identifying the algorithm

Once the actual code is obtained, it can be analyzed by
loading it into a disassembler tool such as IDA Pro. Find-
ing the WPA2 default key generating algorithm is a task
of which the difficulty varies greatly between different
routers. For example, depending on the file format, (e.g.
the raw image, or an executable file found in the root
filesystem), a symbol table may be available, hinting to
what the underlying code is doing. In our experiments, if
it is available, it is often the easiest route to identify the
algorithm. However, if it is not the case, we must resort
to other means of finding it.

Suppose that one is in possession of a number of sam-
ple keys for a certain type of router. From this it can
be reasonably deduced what the character set used in the
WPA?2 default keys is. Typically, the algorithm computes
indices that are subsequently used in an array containing
all possible characters. Hence, in order to find the WPA2
default key generating algorithm, it is often a good strat-
egy to look for an array containing the character set, and

look up where this array is referenced.

Furthermore, ESSIDs are typically also diversified
over all routers. Suppose that the ESSID is <ISP name>
+ <6 digits>. Then the function generating the ES-
SID may refer to a string such as <ISP name>%05d. In
the case we find such a string, we look up where the
string is referenced, leading us to the ESSID generating
function. Itis very likely that the ESSID generating func-
tion is invoked in code that performs a factory reset or
similar. Hence, once the function generating the ESSID
is identified, it is likely the WPA2 default key generating
algorithm can be pinpointed by analyzing the code that
invokes this function.

Finally, another strategy is to look for the code that
performs the factory reset. Since this code is often very
verbose, it should be easy to pinpoint strings used within
this code (e.g. strings used to print the status of the fac-
tory reset to the serial interface). Once the factory reset
code is identified, the functions invoked can be analyzed
in order to identify which generates the WPA2 default
key.

4.3.1 Verifying the existence

Suppose the target function is still not found despite con-
siderable effort. Although, in our experiments we have
not encountered it, it may be the case that the algorithm
is actually not present in the firmware. A reliable way
to verify this proposition is to change the password such
that it is different from the default one. Subsequently, the
flash chip is re-read using any of the methods described
in sections 4.1.2, 4.1.3, 4.1.4 or 4.1.5. Next, it can be
checked whether the image obtained still contains the de-
fault password. If this is the case, then this is a strong
indicator that the default password is stored on the flash
chip and is re-instated when the user performs a factory
reset.

4.4 Analyzing the algorithm

Suppose that the target algorithm is located with great
certainty. The next step is to determine what input is
fed to this algorithm. This information may be deduced
from hints such as the number of characters used from
the input.

Additionally, an attempt may be made to run the al-
gorithm in an emulator, such as QEMU. Although not a
necessity, it greatly simplifies the process of reverse en-
gineering the algorithm, since it enables one to perform
dynamic analysis, diagnose intermediate results, etc. In
order to do so, a tiny piece of code is written that in-
vokes mmap (present in any modern C library) to map the
firmware image to the base address used by the router.
Then, the code performs a call to the address of the func-
tion and pass the expected input values to it. The code is
then compiled with a compiler for the router’s architec-
ture and run within the emulator. This should output the

correct WPA?2 default key, in the case the inputs are as
the algorithm expects. Note that the algorithm itself may
depend on data in RAM being properly initialized, which
is obviously not the case when it is invoked in this fash-
ion. This happens for example when the algorithm calls
sprintf. In this example, a straightforward workaround
is to replace the call with the sprintf from libc, which
is initialized upon execution of the binary.

4.5 Reverse engineering the algorithm
Once all steps described above are completed, the pro-
cess of reverse engineering can start. Reverse engi-
neering typically is a slow process, where one takes a
number of instructions, tries to make sense of them,
and rewrites them in a higher-level programming lan-
guage. This method is comparable to other security
analysis of embedded devices described in the litera-
ture [70, 71, 72,73, 74, 75, 76].

Optionally, the correctness of intermediate of the code
may be verified by means of emulating the code. This
process is described in the last section. Once the algo-
rithm is successfully reverse engineered, it can be used
it to recover the default password from another router of
the same type or product family.

4.6 Recovering the inputs

With no exceptions, all WPA2 default key generating
algorithms that were recovered during our experiments
use either the router’s MAC address or serial number, or
both, as input. Possible inputs such as the serial num-
ber, are assumed unknown to us and hence the strategy
becomes to try every possible serial number. However,
routers exist that also generate the ESSID and channel
number based on the serial number. If these functions
are also reverse engineered, in addition to the WPA2 key
generating algorithm, their results may be used to rule
out the vast majority of candidate keys. In order to fur-
ther narrow down the set of candidate keys, one may at-
tempt to correlate MAC address and serial number. Since
both are typically assigned sequentially, it is very likely
that the vast majority of candidate keys may be ruled out
this way. Though this possibility has not been explored
during our experiments.

Finally, another variable that was encountered during
our experiments as an input to the key generating algo-
rithm is the MAC address of the ethernet (LAN) adapter.
Although this may seem as a variable that is unknown to
an adversary, its contents is typically quite predictable.
For example, it may be tightly correlated to the Wi-Fi
MAC address of the router, which is public. During
our experiments, routers were encountered where these
MAC addresses differ in a single digit. Besides such an
obvious correlation, the first three bytes of the MAC ad-
dress are tied to the router manufacturer, which leaves
only a search space with an entropy of 24 bits to find the

ethernet MAC address.

Encrypted wireless network packets include informa-
tion in plain-text such as the BSSID, the source and des-
tination MAC address. This information is sent unen-
crypted because this allows a wireless network device to
decide whether a packet should be ignored, for example
in case the device is not the recipient, prior to perform-
ing decryption. In one specific router, the ethernet and
wireless interfaces are bridged together in a single inter-
face. The default behaviour in Linux-based devices is
to assign the MAC address of the first interface added
to the bridge. In this case, the bridge interface is as-
signed the ethernet MAC address. Hence, every packet
sent by a client that is destined for the router itself has
the router’s ethernet MAC set as its destination. Since
the router is the default gateway for traffic destined out-
side the local subnet, i.e. the Internet, all packets sent to
any destination on the Internet will have the router’s eth-
ernet MAC address assigned as its destination. Hence,
all that is needed in order to recover the ethernet MAC
address is to capture a single (encrypted) packet from
the air and inspect its destination address. A packet dis-
sected by Wireshark demonstrating this phenomenon is
depicted in Figure 5.

» Frame 4226: 518 bytes on wire (4144 bits), 518 bytes captured
> Radiotap Header vO, Length 14
~ IEEE B02.11 QoS Data, F'Lags: R
Type/Subtype: QoS Data (0x0028)
»-Frame Control Field: ox8841
.000 00B0 0008 0000 = Duration: O microseconds
Receiver address: 00:1a:2b: (00:1la:2b:)
(BSs 1d: 00:1a:2b:) (08:1a:2b:)
TransmLtter address: {)
Source address: ()

(Destination address: 38:72:co:) (38:72:c0:)
Fragment number: O

Sequence number: 823
»-Qos Control: Ox0000
»-CCMP parameters

> Data (470 bytes)

@ Ethernet mac
Figure 5: Packet dissected by Wireshark revealing the
router’s ethernet MAC.

4.7 Building an attack

The number of candidate keys directly depends on the in-
put fed to the algorithm. For example, the router’s MAC
address is public. Hence, in case the algorithm uses only
this value as input, its default WPA2 key can be immedi-
ately computed.

The size of the resulting set of candidate keys is some-
times so small that attempting to authenticate to the de-
vice using all the candidate keys is a feasible way of re-
covering the WPA2 key. However, in situations where
the set is larger, we can deploy a different strategy. Sup-
pose that one is in possession of a captured and stored
authentication handshake between a client and an access
point. It can be used to verify whether a candidate key is
indeed the correct key, see Section 3.3. This method of

verifying the key is significantly faster than attempting
to authenticate, allowing to verify several thousand can-
didates within seconds. On top of that, once the hand-
shake is captured, an attacker need not be in proximity
of the router anymore. Furthermore, in order to capture
such a handshake, it is not necessary to wait for a client
to initiate an authentication. Instead, a de-authentication
packet can be sent to a client who is already connected.
Since this packet is not cryptographically authenticated,
the client will simply disconnect. Typical behaviour of
wireless clients is to automatically re-connect, allow-
ing an authentication handshake to be captured. The
de-authentication is described in detail in Section 3.3.
Hence, all that is needed is a single client being con-
nected to the router in order to significantly speed up the
attack, typically recovering the key within seconds.

S Use cases
In this section we present the results found in several
routers during our experiments.

5.1 Router 1

The first router security analysis include the recovery of
hardcoded credentials, identification of a default WPA2
key which is based solely on public data, an OS com-
mand injection in the Telnet service and a stack buffer
overflow in the HTTP server. This router is used by
a major telecommunications operator, which has many
million customers in several European countries.

5.1.1 Obtaining the firmware

The router embeds an active serial port interface, which
can be used by soldering a header onto the board. When
powering on the device, the boot loader waits for input
from the serial port for 2 seconds before continuing the
boot process and ultimately loading the firmware. Dur-
ing this time-frame it is possible to interrupt the boot pro-
cess and supply an alternate firmware which is loaded
into RAM and executed directly, hence without the ne-
cessity to perform a flash. Hence, we used the method
described in Section 4.1.2 to recover firmware.

5.1.2 Locating the algorithm
The router only offers a very limited web interface to
its user. We assumed that an additional, more privileged,
“system’ account had to exist, which is used by e.g. tech-
nical support. The HTML and Javascript code served by
the web server also hints in this direction. E.g. terms
such as usrPassword, sysPassword and sptPassword are
self-explanatory. By simply searching for these strings in
the firmware binaries, the “system” username and pass-
word can be recovered. The “system” account allowed
us to enable the telnet service.

From the telnet console we found another command:
md5wpakey which, interestingly, outputs the default
WPAZ2 key which is set when the router ships, even in the

case when the user had set the WPA2 key to a different
one. Hence, it seemed a good starting point for finding
the function that generates the default WPA2 key.

We searched through the file system for md5wpakey
and found only a single file that contained that string:
/bin/cfm. When loading the binary into IDA Pro, we
noticed that the symbols in the binary were not stripped,
which greatly simplifies the analysis.

The key is obtained by taking the lower-case hex
representation of the first six bytes of the following hash:

password = MD5(
constant seed,
lowercase WAN mac address,
uppercase LAN mac address

Section 4.6 shows how to observe and recover both
MAC addresses using only wireless interception of net-
work packets.

5.1.3 Telnet command execution

We noticed that there was some input validation ac-
tive for the telnet service. For instance, execution of
sysinfo && sh fails with the following error message:

Warning: operator & is not supported!

From this we blindly assumed that the input is properly
sanitized. Though, having the ability to execute com-
mands allows for a more thorough analysis of the soft-
ware. Therefore, we decided to patch the command in-
terpreter such that is does not sanitize the inputs. During
this process we noticed that the command is not executed
when a & (ampersand) or ; (semicolon) is found. How-
ever, there was no validation that looked for the | (pipe)
symbol.

5.1.4 Stack buffer overflow
During our study we also identified a (indirect) re-
mote executable exploit. A malicious website can
redirect the client’s web browser to send specifically
crafted HTTP requests to the router. =~ We found
a stack-based buffer overflow vulnerability by look-
ing into code that references strcpy in /bin/cfm,
which holds the web server, with IDA Pro and sub-
sequently checking the source and destination point-
ers. The vulnerable function is cgiOpt60Add, it can be
triggered by requesting /dhcpOption60.cmd?action=add
&VendorID=input1&IpStart=input2&ipEnd=input3.
All the input variables are copied onto the stack
without performing bounds checking. The stack is
flagged non-executable. However, ASLR is used neither
by the binary, nor by any loaded shared library. Addi-
tionally no stack smashing protection is used. Hence, the

buffer overflow can be exploited with the use of Return
Oriented Programming (ROP) [77].

5.2 Router 2

The second router is similar to the first router, but a
slightly different variant, it is deployed by the same ISP.
In this section, we will briefly state the difference be-
tween the two routers regarding vulnerabilities.

5.2.1 Obtaining the firmware

The firmware images for this router are also not avail-
able online. We extracted the firmware using the se-
rial interface as we did with Router 1, however, we also
found a more convenient alternative way. We can exploit
the same command injection vulnerability as available in
router 1, with a slight difference that the sysinfo com-
mand was removed, though the ping command could
be used instead. In contrast to the first router, this one
came with the nc command installed, which allows one
to send/receive data. Hence, we obtained a shell on
the router using the command injection vulnerability and
subsequently used nc to read the router’s firmware and
send it over the network.

Also in this router, Telnet could be activated in the web
interface of the “system” account. However, we noticed
that this router uses different global “system” credentials
for the web interface. Interestingly, the option to enable
the telnet is for a “normal” user only not visible in the
web interface, but given the correct url, also the “normal”
user can activate it.

5.2.2 Locating the algorithm

The default WPA2 key generating function is identical
to the one applied in router 1. However, the configura-
tion of router is different: we noticed that the Ethernet
mac address equals the WiFi mac address, with the last
digit decremented by one. This means that the default
WPA?2 password can be computed when only the BSSID
is known.

5.3 Router 3

This router is deployed by a major multi-national
telecommunication operator who offer services in a num-
ber of countries under different brands.

From the router we recovered algorithms used to gen-
erates the default WPA2 key for a number of brands, tak-
ing the router’s serial number as input. The range of
possible serial numbers is not wide enough in order to
provide sufficient entropy for the security of the wireless
network.

Additionally, the default ESSID and wifi channel num-
ber are also generated using the serial number, allowing
us to narrow down the set of possible serial numbers to
several thousands, which can be checked against a cap-
tured authentication handshake within seconds.

5.3.1 Obtaining the firmware

Neither the ISP nor the router manufacturer offers
firmware images for downloading off their websites.
Hence, we had to extract the firmware image from the de-
vice itself. We obtained a firmware image by desoldering
the flash storage chip and using an EEPROM reader to
extract its contents. The firmware image is stored com-
pressed using LZMA, and gets decompressed on start-up
by the boot loader. However, the LZMA image is in a
slightly different format: the uncompressed size is miss-
ing, which was found before on routers that use the same
boot loader [42]. By simply inserting a too large uncom-
pressed size, the file can be decompressed with standard
LZMA tools. The file obtained is a binary blob, which is
mapped in memory on a static address and subsequently
executed. Hence, no executable headers and thus sym-
bols, sections, etc. are available.

5.3.2 Locating the algorithm

As a starting point for finding the WPA2 key generat-
ing function, we speculated that finding the function that
generates the default ESSID should point us in the right
direction. We found it by searching for the string “<ISP
name> 7%07d” (all the routers of this model we encoun-
tered have a default ESSID in the form of the ISP name
+ a 7-digit number). Oddly, the function that generates
the ESSID, returns a static value in the case certain input
is fed into it. A quick search yielded that in the past, the
ISP had been experimenting with a second hidden wire-
less network named as such. Users have discovered the
constant key that can be used to access this network by
using the backup settings functionality. Apparently, this
functionality had not been completely removed in later
firmware revisions.

We successfully reverse engineered both the ESSID
and WPA2 key generating functions. Both functions take
the router’s serial number as input and perform some ob-
fuscation. We assume the router’s serial number is un-
known to an attacker. To the best of our knowledge, it
cannot be obtained from wireless communication with
the router without already knowing its WPA2 key. How-
ever, given that the ESSID of the router is public, the
attacker can build a candidate list of possible serial num-
bers that yield the correct ESSID and compute their cor-
responding WPA2 key. Doing so typically leaves only
several thousands of candidate keys. The candidates can
be verified using a deauthentication attack as described
in Section 3.3. The complete attack procedure can be
performed in a few minutes. This technique can be ap-
plied for the rest of algorithms that were revealed in
this firmware image. We have counted up to 8 different
password generating algorithms all based on the serial
number and a cryptographic hashing function. All these
routers are wide spread over the world.

This vulnerability seems also to be present in another
router from the same manufacturer, also deployed by this
ISP in another country. Although the ESSID generating
function seems to differ. Finally, speculating on the re-
sults found, this vulnerability is likely also present in dif-
ferent router models from the same brand deployed by
this ISP in other countries. However, as of yet, we were
unable to practically verify whether this is the case.

5.4 Router 4

This section describes our reverse engineering research
on a couple of routers deployed by a large Telco in the
Netherlands. We recovered the WPA?2 password generat-
ing algorithm without reverse-engineering the firmware.

5.4.1 Recovering the algorithm
Surprisingly, we were surprised when we applied a pre-
viously published algorithm [29] for similar routers and
noticed that it partially worked. By executing their al-
gorithm, we detected that 9 out of 12 digits matched.
Therefore, we suspected that the vendor was reusing its
previous method described in this patent [30]. With some
elementary linear algebra the “new” constant seed can
be recovered which is used together with an exclusive-or
(XOR) operation in the algorithm.

To recover the key an adversary only need to mount
a brute-force attack with at most 10° candidates, from
which the false candidates can be eliminated in a matter
of seconds.

5.5 Router 5 (family)

This section describes vulnerabilities discovered in a
large family of routers made by the same manufacturer.

5.5.1 Obtaining the firmware

We downloaded a large set of firmwares and used previ-
ously published techniques [36, 38, 37] to de-obfuscated
them. Old versions were not obfuscated though.

5.5.2 Locating the algorithm

We have seen a distinction of default WPA2 keys gen-
eration algorithm in many firmwares. It seems that
there are two main algorithms that cover the majority of
these routers and they use either the algorithm currently
known [38] or a slightly modified version.

In our reverse engineering research, we have observed
that certain routers are using the new password genera-
tion function. The difference between this function and
the old one is simply the characters set alteration. Ba-
sically, the algorithm uses the last 3 bytes from the mac
address to mangle it with some ‘secret numbers’. After
that, these numbers are substituted by the modular posi-
tion in the characters set.

Another model of this family was reverse engi-
neered. This model contained an stripped binary called
‘AutoWPA’ responsible for generating the default WPA

10

key. Such binary was emulated and found out that only
mac address was necessary as input. After a dynamic
analysis, we managed to recover the algorithm which can
be attacked in matter of seconds. The algorithm was sim-
ply using many times bitwise operations (and, nor, xor
and or) with the mac address and constants values. Even-
tually, we realized that MD5 was used to generate a hash
and subsequently converted to different character set.

6 Mitigation and countermeasures

We divide the mitigation strategy in two categories: the
short-term notification phase and the implementation of
long-term countermeasures.

Short-term The severity of weak default WPA?2 pass-
words in many routers demands for an immediate re-
sponse. There are most likely millions of house-holds
that use the default WPA?2 password that is printed on the
sticker of the Internet router. We are currently strongly
encouraging Telcos, ISPs and manufacturers to embrace
their responsibility and start informing their customers
about the insecurity of weak default passwords in routers.
A quick security improvement could be achieved by
stimulating users to change their default key by choos-
ing a strong wireless password [1]. However, it is well-
known that user defined password are often not so dif-
ficult to guess [78, 79]. Therefore, this can be seen
as an effective, but palliating countermeasure, that only
marginally increases the protection of wireless networks.

Long-term There are several countermeasures that can
be applied to improve the security of wireless routers.
The most important change should be the removal of the
password generating algorithm. We noticed during our
experiments that every router is uniquely personalized
during manufacturing. Specifically, a unique serial num-
ber and network MAC addresses are programmed into
EEPROM. Furthermore, the sticker on the router con-
tains the same serial number, MAC addresses and the
wireless password. Therefore, we see no reason why a
strong and randomly chosen password can not be pro-
grammed into EEPROM as well in stead of being derived
from the other two values. Moreover, there are well-
known royalty free statistical test suites that can help
implementing the best practices for generating random
strings [80].

7 Conclusion

We are surprised to notice little improvement in the de-
fault password protection of Dutch routers. In 2008,
the practically exploitable security issue in SpeedTouch
routers [21] generated some serious media attention in
The Netherlands. We had expected that successor and
improved routers would be much more secure. However,
our study reveals that various modern and massively de-
ployed routers still use weak methods to generate default

passwords. Users that did not explicitly changed their
wireless password are vulnerable to practical password
recovery attacks which enables an adversary to remotely
intrude their network within minutes.

We have strictly followed the principles of responsi-
ble disclosure [81]. The guidelines, defined by the Dutch
government [2], propose a time-frame of six months ad-
vance notice for embedded security issues prior to full
disclosure. We informed the Dutch government as well
as all major Telco and ISPs in the Netherlands in an
early stage about the findings of our research. Moreover,
we are currently coordinating a nation wide notification
to the general public together with the Dutch National
Cyber Security Centre (NCSC). With this course of ac-
tion we hope to motivate vulnerable users to change their
weak default WPA2 key.

Although, we focused our research solely on the anal-
ysis of Dutch wireless routers, we have reason to believe
that this issue is an industry-wide problem and applies to
many routers deployed in several countries. We noticed
that some vendors reuse their WPA2 password generat-
ing algorithms with small modifications in other coun-
tries. This suggests that many more routers are vulnera-
ble to practical password recovery attacks.

References

[1] Sheila L. Brand and Jeffrey D. Makey. Password man-
agement guideline. Technical Report CSC-STD-002-85,
Department of Defense Computer Security Center (DoD-
CSC), Fort George G. Meade, Maryland 20755, April
1985. Library No. S-226,994.
National Cyber Security Centre (NCSC). Policy
for arriving at a practice for responsible disclo-
sure. https://www.ncsc.nl/english/ current-topics/news/
responsible-disclosure-guideline. html, 2013.
Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses
in the key scheduling algorithm of RC4. In 8th Interna-
tional Workshop on Selected Areas in Cryptography (SAC
2001), volume 2259 of Lecture Notes in Computer Sci-
ence, pages 1-24. Springer-Verlag, 2001.
Adam Stubblefield, John Ioannidis, and Aviel D. Rubin.
Using the Fluhrer, Mantin, and Shamir attack to break
WEP. In 9th Network and Distributed System Security
Symposium (NDSS 2002). The Internet Society, 2002.
Nikita Borisov, Ian Goldberg, and David Wagner. In-
tercepting mobile communications: the insecurity of
802.11. In 7th International Conference on Mobile Com-
puting and Networking (MOBICOM 2001), pages 180—
189. ACM, 2001.
Nancy Cam-Winget, Russ Housley, David Wagner, and
Jesse Walker. Security flaws in 802.11 data link protocols.
Communications of the ACM, 46(5):35-39, 2003.
Russ Housley and William Arbaugh. Security problems
in 802.11-based networks. Communications of the ACM,
46(5):31-34, 2003.
Adam Stubblefield, John Ioannidis, and Aviel D. Rubin.
A key recovery attack on the 802.11b wired equivalent

[2

—

3

—

[4

—

[5

—

[6

—

[7

—

[8

—

11

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

privacy protocol (WEP). ACM Transactions on Informa-
tion and System Security, 7(2):319-332, 2004.

Itsik Mantin. A practical attack on the fixed RC4 in the
WEP mode. In /1th International Conference on the The-
ory and Application of Cryptology and Information Secu-
rity, Advances in Cryptology (ASIACRYPT 2005), volume
3788 of Lecture Notes in Computer Science, pages 395—
411. Springer-Verlag, 2005.

Andrea Bittau, Mark Handley, and Joshua Lackey. The
final nail in WEP’s coffin. In 27th IEEE Symposium on
Security and Privacy (S&P 2006), pages 386—400. IEEE
Computer Society, 2006.

Rafik Chaabouni et al. Break WEP faster with statisti-
cal analysis. Technical report, technical report, EPFL,
LASEC, 2006.

Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin.
Breaking 104 bit WEP in less than 60 seconds. In
8th International Workshop on Information Security Ap-
plications (WISA 2007), volume 4867 of Lecture Notes
in Computer Science, pages 188-202. Springer-Verlag,
2007.

Erik Tews and Martin Beck. Practical attacks against
WEP and WPA. In 2nd ACM Conference on Wireless Net-
work Security (WISEC 2009), pages 79-86. ACM, 2009.
Pouyan Sepehrdad, Petr Susil, Serge Vaudenay, and Mar-
tin Vuagnoux. Smashing WEP in a passive attack. In
20th International Workshop on Fast Software Encryption
(FSE 2013), volume 8424 of Lecture Notes in Computer
Science, pages 155-178. Springer-Verlag, 2013.

Mathy Vanhoef and Frank Piessens. All your biases
belong to us: Breaking rc4 in wpa-tkip and tls. In
24th USENIX Security Symposium (USENIX Security 15),
Washington, D.C., 2015. USENIX Association.
Achilleas Tsitroulis, Dimitris Lampoudis, and Emmanuel
Tsekleves. Exposing wpa2 security protocol vulnerabili-
ties. International Journal of Information and Computer
Security, 6(1):93-107, 2014.

Pieter Robyns, Bram Bonné, Peter Quax, and Wim Lam-
otte. Short paper: exploiting wpa2-enterprise vendor im-
plementation weaknesses through challenge response or-
acles. In Proceedings of the 2014 ACM conference on Se-
curity and privacy in wireless & mobile networks, pages
189-194. ACM, 2014.

Mayank Agarwal, Santosh Biswas, and Sukumar Nandi.
Advanced stealth man-in-the-middle attack in wpa2 en-
crypted wi-fi networks. Communications Letters, IEEE,
19(4):581-584, 2015.

Stefan Viehbock. Brute forcing wifi protected setup.
https://sviehb.files.wordpress.com/2011/ 12/viehboeck
wps.pdf, December, 2011.

Dominique Bongard. Offline bruteforce attack on wifi
protected setup. Presentation at Hacklu, 2014.

Kevin Devine. Default wep/wpa key algorithm for thom-
son routers. http://www.hakim.ws/st585/KevinDevine,
2008.

Muris Kurgas. Pirelli discus drg a225 wifi router.
default wpa2-psk algorithm vulnerability. http://www.
remote-exploit.org/ content/ Pirelli_Discus_DRG_A225_
WiFi_router.pdf, 2009.

https://www.ncsc.nl/english/current-topics/news/responsible-disclosure-guideline.html
https://www.ncsc.nl/english/current-topics/news/responsible-disclosure-guideline.html
https://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
https://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
http://www.hakim.ws/st585/KevinDevine
http://www.remote-exploit.org/content/Pirelli_Discus_DRG_A225_WiFi_router.pdf
http://www.remote-exploit.org/content/Pirelli_Discus_DRG_A225_WiFi_router.pdf
http://www.remote-exploit.org/content/Pirelli_Discus_DRG_A225_WiFi_router.pdf

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

[36]

(371

(38]

WiFi researchers. Alice agpf: The algorithm.
http://wifiresearchers.wordpress.com/2010/06/02/
alice-agpf-lalgoritmo, June, 2010.

WiFi researchers. Telsey fastweb: Full disclo-
sure. https://wifiresearchers.wordpress.com/2010/09/
09/telsey-fastweb-full-disclosure, September, 2010.

Stefan Viehbock. Al/telekom austria prg
eav4202n default wpa key algorithm weak-
ness. http://sviehb.wordpress.com/2011/12/04/

prg-eav4202n-default-wpa-key-algorithm, 4 December,
2011.

Eduardo Novella. Cve-2015-0558: Reverse-engineering
the default wpa key generation algorithm for pirelli
routers in argentina. http://ednolo.alumnos.upv.es/?
p=1883,2015.

Eduardo Novella. Hacking again pirelli routers: Adb
pirelli p.dg a4000n deployed by meo portugal. http://
ednolo.alumnos.upv.es/ ?p=2008, 2015.

Eduardo Novella and Mambostar. Uncovering the
default wpa key generation for telefonica routers in
spain. http://foro.seguridadwireless.net/desarrollo-112/
fallo-de-seguridad- en-routers-comtrend-full-disclosure,
24 November, 2010.

Seguridad Wireless team. Wlan4xx: Algorithm for ar-
cardyan routers. yacom. http://foro.seguridadwireless.
net/desarrollo- 112/wlan4xx-algoritmo-routers-yacom, 3
March, 2011.

TW Arcadyan Technology Corp., Hsinchu. Arcadyan
encryption scheme patent. http://www.patent-de.com/
20081120/ DE102007047320A 1. html, 2007.

Stefan Viehbock. Vodafone easybox default wps pin al-
gorithm weakness. https://www.sec-consult.com/fxdata/
seccons/prod/temedia/ advisories_txt/20130805-0_
Vodafone_EasyBox_Default_'WPS_PIN _Vulnerability_
v10.txt, 12 December, 2012.

Warker Ranger. Reverse engineering of the wpa default
algorithm of alice (02) modem iad 1421 and 4421.
http://warkerranger.tumblr.com/post/ 67646092068/
re-des-wpa-default-algorithmus-der-alice-02-iad,
November 21, 2013.

Seguridad Wireless team. Arcadyan routers used by voda-
fone in spain are also vulnerables. http://ednolo.alumnos.
upv.es/ ?p=1760, 4 February, 2014.

Jorg Schneider Jakob Lell. Cve-2012-4366: Inse-
cure default wpa2 passphrase in multiple belkin wire-
less routers. http://www.jakoblell.com/blog/ ?p=15, 19
November, 2012.

Alex Altea. Wpa2 cracking dictionary for tp-link routers.
seeds are not so random. http.//www.backtrack-linux.org/
Sforums/showthread.php ?t=62673, 19 November, 2013.
Roberto Paleari and Alessandro Di Pinto. Mul-
tiple vulnerabilities on sitecom devices. sitecom
n300/n600 devices. http://blog.emaze.net/2013/08/

multiple-vulnerabilities-on-sitecom.html, ~ August 19,
2013.

Warker Ranger. Reverse engineering blog. http://
warkerranger.tumblr.com, 2014,

Roberto Paleari and Alessandro Di Pinto. Sitecom
firmware encryption and wireless keys. http://blog.

12

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

emaze.net/2014/04/ sitecom-firmware-and-wifi. html, 22
April, 2014.

Craig Heftner. Reversing belkin’s wps pin al-
gorithm. http://www.devttysO.com/2015/04/
reversing-belkins-wps-pin-algorithm, 10 April, 2015.
Craig Heffner. Reversing d-link’s wps pin al-

gorithm. http://www.devttysO.com/2014/ 10/
reversing-d-links-wps-pin-algorithm, 31 October,
2014.

Stefan Viehbock. Reverse engineering an obfus-
cated firmware image EO1, unpacking. https://sviehb.
wordpress.com/tag/arcadyan-2, 9 September, 2011.
Bernardo Rodrigues. Unpacking firmware images from
cable modems. http://wO0tsec.blogspot.nl/2013/11/
unpacking-firmware-images-from-cable. html, ~Novem-
ber, 2013.

Ross Anderson. Protecting embedded systems the next
ten years. In 3rd International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2001),
volume 2162 of Lecture Notes in Computer Science,
pages 1-2. Springer Berlin Heidelberg, 2001.

Sergei P. Skorobogatov. Semi-invasive attacks — A new
approach to hardware security analysis. Technical Report
UCAM-CL-TR-630, University of Cambridge, Computer
Laboratory, April 2005.

Huawei HG612 hacking. Jtag’ing the broadcom bcm6368
(hg612). https://huaweihg612hacking. wordpress.com/
2012/11/07/jtaging-the-broadcom-bcm6368-hg612/ ,
2012.

Embedded Device Hacking. Re-enabling jtag and de-
bugging the wrt120n. http://www.devttysO.com/2014/02/
re-enabling-jtag-and-debugging-the-wrt120n, 5 Febru-
ary, 2014.

Dpeddi and The-Lizard. Jtag support for lantiq
vgv7519 devices. https://github.com/openwrt-vgv7519/
lantig-vgv7519-original-firmware, 2014.

LAN/MAN Committee et al. IEEE standard for test
access port and boundary-scan architecture. IEEE Std
1149.1-2013 (Revision of IEEE Std 1149.1-2001), pages
1-444, May 2013.

Embedded Device Hacking. Reverse engineer-
ing serial ports. http://www.devttysO.com/2012/11/
reverse-engineering-serial-ports/, November, 2012.
Hendrik Hanff. How to use the bus pirate as a logic ana-
lyzer. In Proceedings of the RIC Project Day Workgroups
- Electronic Design and Mechatronic Design. RIC Project
Day, July 24, Bremen, Germany, DFKI Documents, D-
14-05. DFKI Robotics Innovation Center Bremen, July
2014.

B. Kaliski. Rfc2898: Password-based cryptography spec-
ification version 2.0. Technical report, RSA Laboratories,
September, 2000.

IEEE 802.11 Working Group et al. Ieee standard for in-
formation technology—telecommunications and informa-
tion exchange between systems—local and metropolitan
area networks—specific requirements—part 11: Wireless
lan medium access control (mac) and physical layer (phy)
specifications amendment 6: Wireless access in vehicular
environments. /[EEE Std, 802:11p, 2010.

http://wifiresearchers.wordpress.com/2010/06/02/alice-agpf-lalgoritmo
http://wifiresearchers.wordpress.com/2010/06/02/alice-agpf-lalgoritmo
https://wifiresearchers.wordpress.com/2010/09/09/telsey-fastweb-full-disclosure
https://wifiresearchers.wordpress.com/2010/09/09/telsey-fastweb-full-disclosure
http://sviehb.wordpress.com/2011/12/04/prg-eav4202n-default-wpa-key-algorithm
http://sviehb.wordpress.com/2011/12/04/prg-eav4202n-default-wpa-key-algorithm
http://ednolo.alumnos.upv.es/?p=1883
http://ednolo.alumnos.upv.es/?p=1883
http://ednolo.alumnos.upv.es/?p=2008
http://ednolo.alumnos.upv.es/?p=2008
http://foro.seguridadwireless.net/desarrollo-112/fallo-de-seguridad-en-routers-comtrend-full-disclosure
http://foro.seguridadwireless.net/desarrollo-112/fallo-de-seguridad-en-routers-comtrend-full-disclosure
http://foro.seguridadwireless.net/desarrollo-112/wlan4xx-algoritmo-routers-yacom
http://foro.seguridadwireless.net/desarrollo-112/wlan4xx-algoritmo-routers-yacom
http://www.patent-de.com/20081120/DE102007047320A1.html
http://www.patent-de.com/20081120/DE102007047320A1.html
https://www.sec-consult.com/fxdata/seccons/prod/temedia/advisories_txt/20130805-0_Vodafone_EasyBox_Default_WPS_PIN_Vulnerability_v10.txt
https://www.sec-consult.com/fxdata/seccons/prod/temedia/advisories_txt/20130805-0_Vodafone_EasyBox_Default_WPS_PIN_Vulnerability_v10.txt
https://www.sec-consult.com/fxdata/seccons/prod/temedia/advisories_txt/20130805-0_Vodafone_EasyBox_Default_WPS_PIN_Vulnerability_v10.txt
https://www.sec-consult.com/fxdata/seccons/prod/temedia/advisories_txt/20130805-0_Vodafone_EasyBox_Default_WPS_PIN_Vulnerability_v10.txt
http://warkerranger.tumblr.com/post/67646092068/re-des-wpa-default-algorithmus-der-alice-o2-iad
http://warkerranger.tumblr.com/post/67646092068/re-des-wpa-default-algorithmus-der-alice-o2-iad
http://ednolo.alumnos.upv.es/?p=1760
http://ednolo.alumnos.upv.es/?p=1760
http://www.jakoblell.com/blog/?p=15
http://www.backtrack-linux.org/forums/showthread.php?t=62673
http://www.backtrack-linux.org/forums/showthread.php?t=62673
http://blog.emaze.net/2013/08/multiple-vulnerabilities-on-sitecom.html
http://blog.emaze.net/2013/08/multiple-vulnerabilities-on-sitecom.html
http://warkerranger.tumblr.com
http://warkerranger.tumblr.com
http://blog.emaze.net/2014/04/sitecom-firmware-and-wifi.html
http://blog.emaze.net/2014/04/sitecom-firmware-and-wifi.html
http://www.devttys0.com/2015/04/reversing-belkins-wps-pin-algorithm
http://www.devttys0.com/2015/04/reversing-belkins-wps-pin-algorithm
http://www.devttys0.com/2014/10/reversing-d-links-wps-pin-algorithm
http://www.devttys0.com/2014/10/reversing-d-links-wps-pin-algorithm
https://sviehb.wordpress.com/tag/arcadyan-2
https://sviehb.wordpress.com/tag/arcadyan-2
http://w00tsec.blogspot.nl/2013/11/unpacking-firmware-images-from-cable.html
http://w00tsec.blogspot.nl/2013/11/unpacking-firmware-images-from-cable.html
https://huaweihg612hacking.wordpress.com/2012/11/07/jtaging-the-broadcom-bcm6368-hg612/
https://huaweihg612hacking.wordpress.com/2012/11/07/jtaging-the-broadcom-bcm6368-hg612/
http://www.devttys0.com/2014/02/re-enabling-jtag-and-debugging-the-wrt120n
http://www.devttys0.com/2014/02/re-enabling-jtag-and-debugging-the-wrt120n
https://github.com/openwrt-vgv7519/lantiq-vgv7519-original-firmware
https://github.com/openwrt-vgv7519/lantiq-vgv7519-original-firmware
http://www.devttys0.com/2012/11/reverse-engineering-serial-ports/
http://www.devttys0.com/2012/11/reverse-engineering-serial-ports/

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]

PUB FIPS. Advanced encryption standard (AES). Na-
tional Institute for Standards and Technology (NIST),
197(1), 2001.

Doug Whiting, Russell Housley, and Niels Ferguson.
Counter with CBC-MAC (CCM). http://tools.ietf.org/
html/rfc3610, 2003. RFC 3610.

Morris Dworkin. Recommendation for block cipher
modes of operation: The CCM mode for authentication
and confidentiality. NIST Special publication (800-38C),
38C:1-27, 2004.

Daniel Lowry Lough. A taxonomy of computer attacks
with applications to wireless networks. PhD thesis, Vir-
ginia Tech, 2001.

John Bellardo and Stefan Savage. 802.11 denial-of-
service attacks: Real vulnerabilities and practical solu-
tions. In 12th USENIX Security Symposium (USENIX Se-
curity 2003), page 1527, 2003.

sophron. Automated phishing attacks against wifi net-
works in order to obtain secret passphrases and other cre-
dential. https://github.com/sophron/wifiphisher, 2015.
RFKiller. Mass-deauth script by rfkiller. https://github.
com/RFKiller/mass-deauth, 2014.

Dan Mclnerney. Continuously jam all wifi clients
and access points within range. https://github.com/
DanMclnerney/wifijammer, 2015.

ASPj. Tool for denial of service on wireless networks.
http://aspj.aircrack-ng.org/#mdk3, 2008.

superkojiman. Capturing the wpa
handshake using mass deauthentication.
http://blog.techorganic.com/2010/ 12/20/

capturing-the-wpa-handshake- using-mass- deauthentication/

2010.

darkaudax, mister_x, and sleek. Deauthentication. http://
www.aircrack-ng.org/doku.php ?id=deauthentication,
2006.

Jordan. Wireless deauth attack using aireplay-ng,
python, and scapy. http://raidersec.blogspot.nl/2013/01/
wireless-deauth-attack- using-aireplay. html, 2013.

Cyber Security Labs. Deauthentication/disassociation at-
tack, 2014.

OpenWRT Wireless Freedom wiki. Gnu/linux distribu-
tion for embedded devices. http.://wiki.openwrt.org, Jan-
uary, 2004.

Nathan Fain. Jtagenum. 27c¢3: JTAG/Serial/FLASH/PCB
Embedded Reverse Engineering Tools and Techniques,
2010.

Joe Grand. Jtagulator. Grand Idea Studio, 2013.

Craig Heffner. Reversing the wrt120ns firmware
obfuscation. http://www.devitysO.com/2014/02/
reversing-the-wrtl20n-firmware-obfuscation, Febru-
ary, 2014.

Benedikt Driessen, Ralf Hund, Carsten Willems, Carsten
Paar, and Thorsten Holz. Don’t trust satellite phones: A
security analysis of two satphone standards. In 33rd [EEE

13

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

Symposium on Security and Privacy (S&P 2012), pages
128-142. IEEE Computer Society, 2012.

Roel Verdult, Flavio D. Garcia, and Barig Ege. Disman-
tling megamos crypto: Wirelessly lockpicking a vehi-
cle immobilizer. In 22nd USENIX Security Symposium
(USENIX Security 2013). USENIX Association, 2013.
David Oswald, Daehyun Strobel, Falk Schellenberg,
Timo Kasper, and Christof Paar. When reverse-
engineering meets side-channel analysis—digital lock-
picking in practice. In 20th International Conference
on Selected Areas in Cryptography (SAC 2013), Lecture
Notes in Computer Science. Springer-Verlag, 2013.
Dacehyun Strobel, Benedikt Driessen, Timo Kasper, Gre-
gor Leander, David Oswald, Falk Schellenberg, and
Christof Paar. Fuming acid and cryptanalysis: Handy
tools for overcoming a digital locking and access control
system. In 33rd International Cryptology Conference,
Advances in Cryptology (CRYPTO 2013), volume 8042
of Lecture Notes in Computer Science, pages 147-164.
Springer-Verlag, 2013.

Michael Weiner, Maurice Massar, Erik Tews, Dennis
Giese, and Wolfgang Wieser. Security analysis of a
widely deployed locking system. In 20th ACM Confer-
ence on Computer and Communications Security (CCS
2013), pages 929-940. ACM, 2013.

Flavio D. Garcia, Gerhard de Koning Gans, and Roel Ver-
dult. Wirelessly lockpicking a smart card reader. Inter-
national Journal of Information Security, 13(5):403—420,
2014.

Roel Verdult. The (in)security of proprietary cryptogra-
phy. PhD thesis, Radboud University, The Netherlands
and KU Leuven, Belgium, April 2015.

Hovav Shacham, E Buchanan, R Roemer, and S Savage.
Return-oriented programming: Exploits without code in-
jection. Black Hat USA Briefings (August 2008), August,
2008.

Robert Morris and Ken Thompson. Password security: A
case history. Communications of the ACM, 22(11):594—
597, 1979.

T Lomas, Li Gong, J Saltzer, and R Needhamn. Reducing
risks from poorly chosen keys. ACM SIGOPS Operating
Systems Review, 23(5):14-18, 1989.

Andrew Rukhin, Juan Soto, James Nechvatal, Miles
Smid, Elaine Barker, Stefan Leigh, Mark Levenson, Mark
Vangel, David Banks, Alan Heckert, James Dray, and San
Vo. A statistical test suite for the validation of random
number generators and pseudo random number genera-
tors for cryptographic applications. NIST Special Publi-
cation (800-22), 22:1-152, 2001.

Steve Christey and Chris Wysopal. Responsible vul-
nerability disclosure process. http://tools.ietf.org/html/
draft-christey-wysopal-vuln-disclosure-00, 2002. RFC
draft.

http://tools.ietf.org/html/rfc3610
http://tools.ietf.org/html/rfc3610
https://github.com/sophron/wifiphisher
https://github.com/RFKiller/mass-deauth
https://github.com/RFKiller/mass-deauth
https://github.com/DanMcInerney/wifijammer
https://github.com/DanMcInerney/wifijammer
http://aspj.aircrack-ng.org/#mdk3
http://blog.techorganic.com/2010/12/20/capturing-the-wpa-handshake-using-mass-deauthentication/
http://blog.techorganic.com/2010/12/20/capturing-the-wpa-handshake-using-mass-deauthentication/
http://www.aircrack-ng.org/doku.php?id=deauthentication
http://www.aircrack-ng.org/doku.php?id=deauthentication
http://raidersec.blogspot.nl/2013/01/wireless-deauth-attack-using-aireplay.html
http://raidersec.blogspot.nl/2013/01/wireless-deauth-attack-using-aireplay.html
http://wiki.openwrt.org
http://www.devttys0.com/2014/02/reversing-the-wrt120n-firmware-obfuscation
http://www.devttys0.com/2014/02/reversing-the-wrt120n-firmware-obfuscation
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
http://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00

	Introduction
	Related work
	Wireless security
	Password generating algorithms
	Reverse-engineering routers

	Introduction to WPA2
	WPA2 key derivation
	WPA2 authentication
	WPA2 deauthentication

	Methodology
	Obtaining the firmware
	Downloading from the manufacturer's website
	Interfacing the router's serial console
	Debugging the router with JTAG
	Exploiting a known vulnerability
	Desoldering the flash chip

	Decompressing and de-obfuscating
	Identifying the algorithm
	Verifying the existence

	Analyzing the algorithm
	Reverse engineering the algorithm
	Recovering the inputs
	Building an attack

	Use cases
	Router 1
	Obtaining the firmware
	Locating the algorithm
	Telnet command execution
	Stack buffer overflow

	Router 2
	Obtaining the firmware
	Locating the algorithm

	Router 3
	Obtaining the firmware
	Locating the algorithm

	Router 4
	Recovering the algorithm

	Router 5 (family)
	Obtaining the firmware
	Locating the algorithm

	Mitigation and countermeasures
	Conclusion

