in Deep Learning

Concepts & Examples

Dipanjan (DJ) Sarkar & Sayak Paul Deep Learning DevCon, 2020

| Slide Deck and Tutorials

bit.ly/adv_learn

Session Agenda

£ 2

Introduction Deep Learning Essentials Adversarial Attacks - Adversarial Learning -
Examples Techniques

Who are we?

Dipanjan (DJ) Sarkar Sayak Paul

Data Science Lead, Applied Materials, Author, Deep Learning Associate, PylmageSearch,
Google Dev. Expert - Machine Learning Author, Google Dev. Expert - Machine Learning

CNN Architecture

e CNNs have a stacked layered architecture of
several convolution and pooling layers

e Convolution layer

e Consists of several filters or kernels

Convolution

Layer (rel) pooling e Passed over the entire image in patches and computes a dot product

> > onvolution .
Bl ///// //L/;/r ‘ L\;ove: frele P‘L"a’;’:f e Resultis summed up into one number per operation (dot product)
77

— .

Input
Dropout
Output

e Pooling layer

e /MW”/ it A - e Downsamples feature maps from conv layers
“Festura Maps Max Pooling Convolution " Poosng latten

e Typically max-pooling is used which selects the max-pixel value out of a
patch of pixels

e Activation layer

e Feature maps\ pooled outputs are sent through non-linear activations

e Introduces non-linearity and helps train via. backpropagation

Traditional ML vs. Transfer Learning

Traditional ML VS

e Isolated, single task learning:
o Knowledge is not retained or
accumulated. Learning is performed
w.0. considering past learned
knowledge in other tasks

Leaming
Task 1

o

Transfer Learning

Learning of a new tasks relies on
the previous learned tasks:

O

Learning process can be faster, more
accurate and/or need less training data

The power of Transfer Learning

e Leverage a pre-trained deep
learning model (which was
Transfer learning: idea trained on a large dataset — like
Instead of training a deep network from scratch for your task: I mageN et)

e Take a network trained on a different domain for a different source task
e Adapt it for your domain and your target task

e Adapt the model by applying and
transferring its knowledge in the

Variations: m I &U\ ”
context of our problem

e Same domain, different task

e Different domain, same task - ﬂﬂ/
L model model
" e Two approaches

* Frozen pre-trained model as a feature extractor

* Fine-tuning pre-trained model on our data

conv norm

Pre-trained Models - ResNet-50

3x3
max
pool

batch

Conv Block

batch | .| 3x3 |batch |

conv ' norm

1x1 batch

conv | norm ‘

r
conv identity conv identity conv
block || block | >|block| | block |] block i/ I
x3 x5
Output
Identity Block
w ——\‘::
i y— [
1x1 3 x 3 |batch
conv conv | norm

J

L

\Z

Pre-trained Models - MobileNet Family

MobileNet V1 MobileNet V2
:' 3x3 : § !
Depthwise Conv | ! ; | Pointwise Conv
Batchnorm Batchnorm
ReLU6 ReLU6
i | i I
1x1 ! E 3x3
Pointwise Conv | | \ | Depthwise Conv
Batchnorm Batchnorm
ReLU6 ,5 | ReLU6
I Depliomse ol | ¥
Convolution Block ' 1x1
i | Pointwise Conv
Batchnorm

Bottleneck Residual
Block

Pre-trained Models - EfficientNet Family

'} resolution HxW , resolution

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

Training a Neural Network

Input X e Perform parameter updates to
' minimize the loss (training
. 2l Layer 1 i
Weighta " | (data transformation) ObJECtIVE)
; e Typical flow involves:
Weights | . ol
1 (data transformation) » Forward pass with the input going through various
v transformations

Weight e Compute the loss based on predictions and actuals
update Y i §

e Compute gradients

e Backpropagate gradients to update layer weights
@ ackpropagate g p yer weig

; e TensorFlow / PyTorch enables
Hoss w00 easy Automatic Differentiation

Optimizer

Deep Learning with Python, Francois Chollet

Custom Training Loops in TensorFlow

for epoch range(epochs):
print("\nStart of epoch %d" (epoch,))

e GradientTape records all relevant
NN operations in the forward pass

for step, (x_batch_train, y_batch_train) enumerate(train_dataset):

with tf.GradientTape() as tape:

® Hence easy to compute gradients
‘ in reverse order during the
s b bt e, D backward pass

loss_value - loss_fn(y_batch_train, logits) ® Useful tO eXtraCt relevant
gradients w.r.t the loss (used in
adversarial attacks)

grads - tape.gradient(loss_value, model.trainable_weights)

optimizer.apply gradients(zip(grads, model.trainable_weights))

Natural Adversarial Examples

Candie Nad Mushroom Na | Alligator Hummingbird Alligator Jbelisk Fox Squirrel Rocking Char Grasshopper

:«:" ‘

'n NM ‘

P

Background Cues Erratic Overgeneralization

Natural Adversarial Examples, Hendrycks et al.

Natural Adversarial Examples

“[..] DenseNet-121 obtains around

@)

% accuracy, an accuracy drop of
approximately 90% [..]”

le class

e Entire image being mapped to a
sing

. ’\v.' O.ﬁ \ﬁ\h v,,.nﬂl,.\lv/.. : \‘ e -
?’/’ ‘B g 5 4'0/ :I..,.N\/ .l%ﬂ
LA //.W g

WA BN
! LV ?«Q\,.
>

5 & .
A .)

R
o
-
—
o
>
o
OF
2
o
£
c
©
=

Hendrycks et al.

Natural Adversarial Examples

Natural Adversarial Examples,

Natural Adversarial Examples

Dragonfl Skunk Dragonfl Banana Dragonfl Sea Lion Dragonfl Mitten
- - . -7 L

e Color and texture as opposed
to shape as the primary
descriptors.

Color Texture

Natural Adversarial Examples, Hendrycks et
o 11 I8

Natural Adversarial Examples

5.1. Robust Training Methods Hardly Help

We examine popular robust training techniques. Unfor-
tunately, we find that on natural adversarial examples for
classifiers, these techniques hardly help. In this section we
exclude IMAGENET-O results, as the robust training meth-
ods hardly help with out-of-distribution detection as well.
/-, Adversarial Training. We investigate how much ro-
bustness /., adversarial training confers, so we shall first
describe /., adversarial training, and then adversarially train
ResNeXts. Adversarially training the parameters 6 with loss
function L on dataset D involves the objective

Natural Adversarial Examples, Hendrycks et al.

Synthetic Adversarial Examples (via Attacks)

e Purposely adding perturbations or
noise in the data to fool the model

e Synthetically created on top of an
input image

I +.007 x

e Attacker adds small perturbations

o SEVIOE) ion(s 6000 (distortions) to the original image
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

e These notorious perturbations are
indistinguishable to the human eye,
but causes the network to fail

Impact of Adversarial Attacks

‘How are you?"'

“panda”

57.7% confidence

x0.07

SR

x0.01

noise

‘Open the door’

-

“gibbon”

99.3% confidence

Input Data

Indistigushable
Noise

Model Prediction

Impact of Adversarial Attacks

Original Image Adversarial “Noise” Adversarial Example

+ 0.04x

Benign Benign
Ma"gnant Malignant _
00 02 04 06 08 10 00 02 04 06 08 10

Model Confidence Model Confidence

Adversarial Attacks - Principles

Input X
Later e What if we calculated gradients
Weights > ; . . 2
(data transformation) with respect to the input data?
'
Wohs |- Layer e Update input data with these
i (data transtormation) gradients to maximize the loss

'

update Y Y
e Gradients inform us how much to
@ @ nudge the input data to affect the
v loss function

Loss score

(instead of minimizing)?

Adversarial Attacks - Techniques

Projected Gradient Descent (PGD) Targeted Attack Fast Gradient Sign Method (FGSM)

Adversarial Attacks - Projected Gradient Descent

ma%(glAnizeE(hg(m +6),y) e Perturb the inputimage with a certain
) delta to maximize the network loss

Z denotes our adversarial example o))
e Initially delta is assigned to all zeros

hg denotes our model, or hypothesis function

z € X the input and y € Z the true class

£(ho(z),y) denotes the loss

d represents an allowable set of perturbations
suchthat §: ||§|e <€

ie., we allow the perturbation - ‘ .
to have magnitude between [—e, €] * After each optimization step, delta is

projected back to a norm ball, in this
caseitis Leo norm

e No random initialization to prevent rigorous optimizations

e Objective is to create an image across
iterations that maximizes the loss

e We do this by clipping delta to [-€, +&]
such that it doesn’t change the visual
semantics.

e Goalis to fool an already trained model.

Source: https://adversarial-ml-tutorial.org/introduction

Adversarial Attacks - Projected Gradient Descent

maximize £(hg(z + §),y)
deA

Z denotes our adversarial example

hg denotes our model, or hypothesis function ® Loss for predicting the true

z € X the input and y € Z the true class
£(ho(z),y) denotes the loss class (hog) goes up t
d represents an allowable set of perturbations
suchthat §: [[§le <€ e This form of gradient
e, s descent-based optimization is
also referred to as Projected
Gradient Descent

e delta is random but learned

Source: https://adversarial-ml-tutorial.org/introduction

Adversarial Attacks - Targeted Attack

mafs(eh&lize(e(h"(m +0),4) = £(ho(+ 9), Yrarget)) Perturb the input image with a certain delta
to maximize the network loss

e Initially delta is assigned to all zeros

z denotes our adversarial example
hg denotes our model, or hypothesis function
z € X the input and y € 7 the true class e Norandom initialization to prevent rigorous optimizations

£(hg(z),y) denotes the | o .
(0(1:) y) i i Objectlve Is to create an Image across

0 represents a allswable:set of perturbaticns iterations that maximizes the loss of the true
such that §: [|6]jc < class and minimizes the loss of the targeted
ie., we allow the perturbation class

to have magnitude between [—e, €]

Ytarget the target class « After each optimization step, delta is

projected back to a norm ball, in this case it is
Loo norm

* We do this by clipping delta to [-g, +€] such
that it doesn’t change the visual semantics.

m ; Goalis to fool an already trained model.

Source: https://adversarial-ml-tutorial.org/introduction

Adversarial Attacks - Targeted Attack

ma%cirAnize(Z(hg(m +6),y) — £(ho(x + 0), Ytarget))
(S

Z denotes our adversarial example
hg denotes our model, or hypothesis function
z € X the input and y € Z the true class
£(ho(z),y) denotes the loss
d represents an allowable set of perturbations
suchthat §: ||§|e <€
ie., we allow the perturbation
to have magnitude between [—e, €]

Ytarget the target class
B

Source: https://adversarial-ml-tutorial.org/introduction

e Loss for predicting the true
class (hog) goesup t

e Loss for predicting the target
class (dog) goes down ¥

e This form of targeted gradient
descent-based optimization is
also referred to as Targeted
Attack

e Delta is random but learned

Adversarial Defense with Noisy Student Training

ImageNet Top-1 Accuracy (%)

851

60 4

—a— Noisy Student Training (L2)
-e- EfficientNet-L2

~~
S
~~

epsilon

Source:

Noisy student training; Xie et al.

(2019)

e Doesn’tincorporate any explicit
adversarial training objective

e Inclusion of noisy during student
training brings robustness
e Strong augmentation
 Stochastic Depth
* Dropout

Adversarial Attacks - Fast Gradient Sign Method

adv_z =z + e xsign(V,J (6, z,y))

where

« adv_x : Adversarial image.

« x:Original input image.

« y:Original input label.

« € : Multiplier to ensure the perturbations are small.
« 6 :Model parameters.

e J:Loss.

Before Adversarial Attack After Adversarial Attack
True:Sneaker Pred:Sneaker Prob:1.000 Adverarial Pattern - EPS:0.08 True:Sneaker Pred:Ankle boot Prob:0.882
0

0 5 10 15 20 5 30 0 5 10 15 20 3 30

e Uses the gradients of the neural
network to create an adversarial
example

e Objective is to create an image that
maximizes the loss.

e Gradients of the loss with respect to the
input image are taken

e A small multiplier (epsilon) is added to
the sign of the gradients and added to
the original image

e Goalisto fool an already trained model.

Adversarial Learning - Techniques

Adversarial Learning - Defending against Attacks

e |t’s still being actively researched
® Train models with adversarial data + organic data
e Use adversarial regularization loss during training

e But that may not be sufficiently enough (natural
adversaries)

® Noisy student training shows promise

e So does smooth adversarial training

Adversarial Learning - (Re)training from Scratch

@ Obtain the standard FashionMNIST dataset (Organic Data)
(2) Train asimple CNN model on the Train dataset (Organic Data)

@ Evaluate performance of simple CNN on the Test Dataset (Organic Data)

@ Apply FGSM adversarial attacks on the datasets to create new Train
and Test datasets (Perturbed Data)

@ Evaluate performance of simple CNN on Test Dataset (Perturbed Data)

(s) Retrain our simple CNN with Organic Train + Perturbed Train Datasets

() Evaluate retrained CNN performance on both Organic Test & Perturbed
Test Datasets

Adversarial Learning - (Re)training from Scratch

¥ Traia Data Peltur{;):tg Train
Ea Apply FGSM |
o Lotprairll
A
{ NNLayer1 | nitial : L_NN L;yfar 1 |Retraining
NN Layer 2 J [NN Layer 2

i NN Layer N | NN Layer N

& Evaluate

Performance on
Organic
Test Data

Train & Evaluate
Performance on
Perturbed
Test Data

Perturbed Test

Test Data Data

Neural Structured Learning

* A new learning paradigm to train neural
networks by leveraging structured signals in
addition to feature inputs

 Structure can be explicit as represented by a
1S THIS A graph or impliCit

CAT2DOG? o e gTEOY e Implicit structure can be created by leveraging nearest neighbors
similar to input

v e Adversarial examples created by perturbations on inputs can also be

NEVRONS used
o e Structured signals are commonly used to
Pt R represent relations or similarity among
samples

* Models trained with adversarial perturbation
samples have been shown to be robust
against malicious attacks

Neural Structured Learning - Methodology

e Structured signals e.g. generated
adversarial examples, are used to
regularize the training of a neural

)) network
S Bhg Optimize: loss = ;cw..y.)+n;1:,\-(,,,.4.-,..,v(.r,)) o
7 ssonsn il (LG o~ v el ® Objective is to minimize total loss
prom— Y | D d . contdssn total_loss = supervised_loss + neighbor_loss
e 2 £ 9oa)) Z) Wiy + Diha(z1), ho(a3))
./. Ty YT —— e Minimize supervised loss for
ol e e B e accurate predictions

Cross-Entropy (for classification)

e Minimize neighbor loss to
maintain the similarity among
inputs from the same structure

Adversarial Learning with NSL

e Create implicit structures by
generating adversarial examples

e Perform Adversarial Regularization

total_loss = supervised_loss + adversarial_loss

® Minimize supervised loss for accurate
predictions

® Minimize adversarial loss to maintain
the similarity among inputs and their
adversarial examples

Adversarial Learning with TensorFlow - NSL

neural_structured_learning nsl
: : Read
x_train, y_train x_test, y_test tf .keras.datasets.mnist.load_data() ~ Data
x_train, x_test x_train 255.8, X _test 255.0 ‘
| . e o ‘ , Scliss | Keras
model = tf.keras . ' Model
; ‘ < 9 e : Config
adv_config nsl.configs.make_adv_reg_config(multiplier=0.2, adv_step_size=0.065 KJAd dal
adv_model = nsl.keras model, adv_config imoce
adv_model.compile(optimizer Compile
hbi e - Fit
metrics
adv_model . fit({ . X_train y_train}, epochs=5 Eval
adv_model .evaluate x_test . y_test

Adversarial Training Observations

Adpversarial Examples Improve Image Recognition

Cihang Xie'?* Mingxing Tan' Boging Gong' Jiang Wang' Alan Yuille?
'Google %Johns Hopkins University

Paper: arxiv.org/abs/1911.09665

Quoc V. Le!

e Adversarial training methods that depend on
a specific perturbation technique may not
generalize well to other perturbations

e This is where Noisy Student Training can be really helpful

¢ |t’s important to retrain with the perturbed
training set and the original training set to
prevent the model from catastrophic
forgetting

e Smoother activations (e.g. Swish) tend to
work well when adversarial training takes
place from the beginning

Smooth Adversarial Training

Forward Backward
%9 Parametric SoftPlus 12 Parametric SoftPlus
~ Swish ~ Swish Y [|
3.2 ey 1.0 GeLy ,
ELU ELU

2.5 ||— SmoothReLU 0.8 |l—_SmoothReLU
1.8 0.6
1.1 ’ 0.4
0.4 ; 0.2
-0.3 0.0
-1.0 -0.2

40 -30 -20 -1.0 00 10 20 30 4.0 -40 -30 -20 -10 00 1.0 20 3.0 40

Figure 2: Visualizations of smooth activation functions and their derivatives.

GE.‘LU Swish

Smoo:t;IReLU
Parametn': Softplus *ELU

~
o

@ ReLU
#* Softplus

D
@

33 34 35 36 37 38 39 40 41 42 43
Adversarial Robustness (%)

Standard Accuracy (%)
[+2]
o

Figure 3: Smooth activation functions improve adversarial training. Compared
to ReLU, all smooth activation functions significantly boost robustness, while
keeping accuracy almost the same.

Source: Smooth Adversarial Training; Cihang Xie (2020)

e Replaces RELU with smoother

approximations like GELU, Swish
etc.

e Helps to produce harder

adversarial examples during the
training because of more
informed gradients.

References

e Visuals & Content

https://www.tensorflow.org/neural_structured_learning

https://medium.com/tensorflow/introducing-neural-structured-learning-in-tensorflow-5a802efd7afd

https://github.com/sayakpaul/Image-Adversaries-101

https://github.com/dipanjanS/convolutional_neural_networks_essentials

https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

https://www.tensorflow.org/neural_structured_learning/tutorials/adversarial_keras_cnn_mnist

https://adversarial-ml-tutorial.org/introduction

e Research Papers

e https://github.com/dipanjanS/adversarial-learning-robustness/tree/main/research_papers

Stay in Touch!

LinkedIn GitHub LinkedIn GitHub

linkedin.com/in/dipanzan github.com/dipanjan$S linkedin.com/in/sayak-paul github.com/sayakpaul

<

&,

