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applications domains. The design and implementation of this kind of middleware,
however, it is still a challenge due to general adaptation issues, such as When to adapt?
Where to include the adaptation code? What to adapt?, and How to guarantee safe
adaptations?. Current solutions commonly face these challenges at the implementation
level and do not focus on the safety aspects of the adaptation. This paper proposes a
holistic solution implemented in Go programming language for developing adaptive
middleware centred on the adoption of software architecture principles combined
with lightweight use of formalisms. Software architecture concepts work as an enabling
approach for structuring and adapting the middleware. Meanwhile, the formalisation
helps in providing some guarantees before and during the middleware execution. The
proposed solution is evaluated by implementing an adaptive middleware and
comparing its performance against existing middleware systems. As shown in the
experimental evaluation, the proposed solution enables us to design and implement
safe adaptive middleware systems without compromising their performance.
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1 Introduction
Design issues commonly considered in implementing adaptive software systems also
impact the development of an adaptive middleware [30]: Why to adapt the software?
When to adapt? Where is the need for change? What artefacts need to be modified? How
is the adaptation performed? How to guarantee safe adaptations?. As observed in [29],
further concerns have their origin in the middleware domain itself. Firstly, changes in the
application’s requirements (above the middleware) and infrastructure conditions (below
the middleware) usually motivate the adaptation. Secondly, the appropriate time to trig-
ger the middleware adaptation should take into account the application’s state. Finally,
the middleware adaptation is also more critical in the sense that changes can affect the
middleware itself and the application built atop it.

Initiatives on designing and implementing adaptive middleware are not novel
[4, 6, 17]. Meanhwile, the appearance of new application domains, such as cloud com-
puting [25], IoT [21, 31], sensor networks [23], e-Health [16], along with the emerging
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of new technologies like process mining [29], improvements on model checkers perfor-
mance, adoption of software architecture concepts [28], and the rise of new programming
languages [26] have been responsible for renewing the challenges and possibilities of
developing middleware systems.

In this context, this paper still focuses on the classical problem of how to design
safer and perfromative adaptive middleware systems. To face this challenge, however, it
combines software architecture principles, lightweight formalisation, and features of Go
programming language [9, 20]. In the end, the objective is to provide a holistic solu-
tion including a development framework and an execution environment to facilitate the
job of adaptive middleware developers. The use of formalisms allows advances on the
development and execution of safer middleware systems, while Go helps to improve the
middleware performance and design.

Having the mentioned objective in mind, this paper extends an existing framework
named MidArch [26, 28, 29]. The new solution, namely gMidArch, is fully reimple-
mented in Go, and extends the previous version in five main points: works with a richer
set of formal operators to formally specify architectural elements, presents a program-
ming language-agnostic ADL (Architecture Description Language), proposes additional
architectural elements to build MOM (Message-Oriented Middleware), redesigns the
execution environment to work with software architecture principles, and includes a new
adaptation strategy, namely evolutive adaptation.

The rise of modern languages like Go helps to boost the implementation of adaptive
middleware. In practice, the potential of Go is a two-way street between the imple-
mentation and design. Being a programming language, Go enables us to advance on
implementation issues while some facilities already provided by the language allow some
improvements on the middleware design. For example, the concurrency model that
includes goroutines (lightweight threads) and CSP-inspired [13] channels enormously
facilitate the implementation of concurrency issues. Meanwhile, the existence of dynamic
plugins simplifies the design of the adaptation mechanisms.

The evaluation of gMidArch focused on comparing the performance of an application
built atop different middleware flavours: RPC-based/MOM middleware systems imple-
mented using gMidArch, two commercial middleware systems (gRPC! and RabbitMQ?)
and an RPC-based adaptive middleware (AFirM) [33]. The comparison with the commer-
cial middleware systems is essential to show the viability of using gMidArch middleware
systems even in scenarios in which adaptation is not mandatory. Finally, even not being
commercial, the comparison with AFirM is interesting because it implements adaptation
strategies similar to gMidArch.

The rest of this paper is organised into six sections. Section 2 introduces basic concepts
of adaptive middleware and briefly describes MidArch. Next, Section 3 presents details of
gMidArch. Section 4 shows a performance evaluation of a muiddleware built using gMi-
dArch. Section 5 presents existing researches on adaptive middleware. Finally, Section 6
presents conclusions and some future work.

Uhttps://grpc.io/
2https://www.rabbitmq.com/
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2 Background
Before describing the proposed solution for building adaptive middleware systems, we
present some basic concepts of adaptive middleware and introduce MidArch.

2.1 Adaptive middleware

Adaptive middleware is a particular kind of middleware whose behaviour can be mod-
ified at runtime. The design of this kind of middleware faces some of the 5W1H issues
associated with self-adaptive software [30]. The first issue, Why to adapt, is usually moti-
vated by the need of adapting the middleware to changes in application’s requirements,
changes of environmental conditions, fixing middleware’s bugs or extending/improving
the middleware functionality.

Middleware designers also have to decide when the adaptation needs to be applied, and
when it is possible to do so. It is also necessary to determine if adaptation actions need
to be carried out to react to undesired behaviours or proactively act to avoid them. For
example, the adaptation should occur when the network becomes overloaded, e.g., forc-
ing the data compression (reactive). Alternatively, the middleware adaptation can happen
when the adaptation mechanism detects that a performance bottleneck of a middleware
component becomes imminent (proactive).

Another critical aspect of designing an adaptative middleware refers to establish where
the need for change is. In this case, the middleware developer has to define if the adap-
tion should be applied to a single component, a middleware layer or the whole structure,
for example. Very related to the Where issue, the What one demands the definition of
which artefact or attributes must be changed when an adaptation is needed. For example,
the change may be something simple as an algorithm replacement or something more
complex like to add or replace a component of the middleware architecture.

Finally, it is essential to define Zow the adaptation actions can be executed and imple-
mented. For example, as the adaptation logic usually consists of several components (e.g.,
MAPE-K) and may be very complex, it becomes necessary to define if the adaptation logic
is internal or external to the middleware.

2.2 MidArch
MidArch (adaptive Middleware aid by software Architecture) [28] is a solution to help
middleware developers to implement and execute adaptive middleware in a safe way. It
uses lightweight formalisation, includes a software architecture-based framework and an
execution environment. The framework facilitates the middleware development and the
lightweight adoption of formal methods (CSP) integrated into the framework enables us
to verify behavioural properties before and while the middleware executes. At runtime,
an environment manages the middleware execution, implements a MAPE-K (Monitor,
Analyze, Plan, Execute, and Knowledge) feedback loop [14] and uses process mining tools
[1] to decide the right time to adapt.

Using the middleware framework, developers need to define a software architecture in
a Java-based Architecture Description Language (ADL) to implement the adaptive mid-
dleware. The framework consists of a set of components and connectors implemented
in Java, annotated with CSP specifications and freely reused and composed in a soft-
ware architecture according to the needs of the middleware developer. Having defined
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Table 1 gMidArch extensions

Extension Rationale

Richer subset of CSP The support to a more abundant subset of CSP operators used to spec-
ify the behaviour of architectural elements formally. The new set of
supported operators includes external choice, parallel, and exception
operators, and enable us to describe much more complex behaviours.

Agnostic ADL An ADL, namely mADL, keeps middleware developers away from pro-
gramming language specificities. Using the proposed ADL, developers
only need to define the middleware software architecture that becomes
the unique artefact needed to implement the middleware.

Richer subset of components The architectural framework of MidArch was extended with execution
environment and MOM specific components. This extension allows the
implementation of publish/subscribe middleware systems in addition
to the original support to RPC-based ones.

Customised execution environment Use of software architecture principles to design the execution envi-
ronment that is customised according to the middleware being imple-
mented. This architecturization of the execution environment is an
initial step for making viable its dynamic adaptation.

Evolutive adaptation Development and runtime support to evolutive adaptation. The evolu-
tive adaptation is important because it

the architecture, it is then verified to check behavioural (using FDR®) and structural prop-
erties, deployed and executed by the execution environment. At runtime, middleware
execution logs are continuously monitored to trigger adaptations. In this case, an adapta-
tion plan is generated and executed to change the middleware architecture that is verified
again and redeployed.

MidArch supports two kinds of adaptations, namely corrective [29] and proactive [26].
A corrective adaptation is triggered when a problem in the middleware execution is
detected and needs to be fixed, e.g., an error to establish a connection. In turn, proactive
adaptation tries to anticipate a performance problem and triggers the adaptation before
the problem occurs. Currently, we use process mining techniques (PROM?) to trigger
reactive adaptation and PRISM models [18]) for proactive adaptations.

3 Go MidArch
Go MidArch (gMidArch®) is a full implementation of MidArch in the Go programming
language that includes the extensions presented in Table 1.

As a result of the proposed new extensions, Fig. 1 shows an overview of gMidArch.
Developers utilise elements available in Architectural Library to define the middleware
software architecture using the proposed agnostic ADL, namely mADL. This architec-
tural description serves as input to Creator that automatically produces a customised
software architecture of the execution environment (EE Software Architecture). Genera-
tor produces CSP specifications that describe the behaviour of the adaptive middleware
(CSP Mid) and execution environment (CSP EE).

It is worth observing that Generator uses both the software architecture artefact and
specifications stored in the Architectural Library to generate the CSP specification of the
whole architecture. In practice, the software architecture artefact defines how the com-
ponents are connected (see Section 3.2), e.g., “cLt,c2” means that components c1 and ¢2
are connected through connector ¢. CSP specifications of c1, ¢, and ¢2 are already stored

3https://www.cs.ox.ac.uk/projects/fdr/
“http://www.promtools.org
5Source code available at https://github.com/gfads/midarch/tree/nelson/evaluation
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Fig. 1 Overview of gMidArch elements

in the Architectural Library. Then, Generator combines the specifications of c1, t and c2
in a CSP parallel composition.

Next, Checker invokes an external tool (Formal Tool) with two purposes: to verify
desired properties of CSP specifications, e.g., deadlock freedom; and, if the properties are
satisfied, to generate state machines to be deployed in the Execution Environment.

The execution environment is customised according to the middleware software archi-
tecture and consists of a Core that coordinates the interactions between MAPE-K
elements and Execution Units whose role is to host architectural elements. Finally, Plu-
gin Repository stores plugin versions of architectural elements. For example, when a new
version of an existing component/connector is available, it is stored in the repository and
becomes a candidate to replace the respective component/connector that is in execution.

Following subsections describe in details the proposed extensions.

3.1 Richer CSP subset
The lightweight formalisation is one of the essential characteristics of gMidArch.
The formalisation consists of defining behavioural models in CSP that describe how
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components/connectors behave while executing. These models are used to generate state
machines that work as execution artefacts.

The CSP specification defines the temporal ordering of actions executed by a compo-
nent or connector. The specification includes internal and external actions executed by
the element. An internal action is something executed by the element, is usually associ-
ated with its business and does not involve any interaction with external elements. For
example, a marshaller executes the (un)marshalling operation without the involvement
of any external element. Meanwhile, external actions are used to describe interactions
of the element with its partners (external world) and require synchronisation with them,
e.g., the marshaller receives requests from external elements asking for (un)marshalling
something, while sends responses to them.

In MidArch, behavioural specifications can only use the CSP prefix operator (—), e.g.,
e — P informally means that an element performs the event e and then P runs. This oper-
ator enables us to specify behaviours as a sequence of actions where one is executed after
another. For example, the behaviour of a middleware marshaller (Bss) can be easily spec-
ified like By = invP.el — i_Process — terP.el — Bjy;. In this behaviour expression, the
marshaller receives an invocation from external component el (invPel), (un) marshalls it
(i_Process), terminates the processing (terPel) by sending a response to el, and behaves
like Bys again.

While useful, the prefix operator limits the kinds of behaviours that can be specified. In
the previous example, the marshaller neither can receive a request from another compo-
nent (e.g., e2) nor we can define behaviours in which the component fails. However, these
specifications could also be extended to include the possibility of defining alternatives
and/or choices to express more complex behaviours.

In practical terms, this limitation occurred due to the complexity of executing state
machines in which, given a particular state, one or more actions are enabled to be
executed simultaneously. Figure 2 shows examples of state machines generated only
using prefix operator and one produced from more elaborated behaviours including CSP
operators, such as external choice and parallel.

In this figure, the execution unit traverses the state machine and performs the action
labelled in the edges. The execution of the second machine (Fig. 2b), however, requires the

CSP Specification State Machine Execution
trace(s)

(TR a b -——
Liorary Unit

(a) MidArch CSP

CSP Specification State Machine Execution
trace(s)
ace,.
e Bx=a->c->e->B ﬁ
SS———— & il % E> Execu_tion
Architectural E> b->d->e->By Unit
Llbrary bde...

(b) gMidArch CSP

Fig. 2 Practical view of the CSP extension
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selection of an event (e.g., a or b) from a list of events enabled simultaneously to be exe-
cuted. The implementation of this kind of selection is not supported in Java. Section 3.5
will describe how the execution unit implemented in Go can execute the state machine
shown in Fig. 2b.

3.2 Agnostic ADL
Whatever the implementation language (Java or Go), developers define the middleware
software architecture using a programming language-agnostic ADL, namely mADL (Mid-
dleware Architecture Description Language). Along with mADL, we also implemented
Go and Java generators able to create particular software artefacts to be deployed in the
execution environment, according to the target language.

mADL is a declarative language and needs to be simple as it will be used by develop-
ers who are responsible for defining the middleware software architecture. The language
provides three abstractions for specifying architectures: component, connector and con-
figuration. A component is a piece of computation or a data storage that represents a
broad range of distinct elements, e.g., a simple procedure or an entire application. A con-
nector is an architectural building block used to model interactions among components.
Lastly, the configuration describes how components and connectors are wired together
[19, 32]. Additionally, mADL allows the definition of the required adaptation strategy:
corrective, proactive and evolutive. The use of these abstractions is shown in the following
example:

1. Configuration MiddlewareClient :=

2. Components

3. namingProxy: NamingClientProxy
4. appProxy  :AppClientProxy
5. requestor : Requestor

6. crh : CRH

7. Connectors

8. tl:NTol

9. t2 : RequestReply

10. Attachments

11. namingProxy, t1, requestor

12. appProxy, t1, requestor

13. requestor, t2, crh

14. Adaptability

15. Evolutive

16. EndConf

This middleware configuration, named MiddlewareClient, includes four components
(Lines 3-6) and two connectors (Lines 8-9) which are attached as shown in Lines 11-13,
e.g., components appProxy and requestor are connected through connector ¢I. Finally,
Lines 14-15 define the kind of adaptability required by the middleware, namely evolutive,
proactive or evolutive. The first and second types of adaptations are supported at run-
time by invoking process mining tools and using PRISM language as initially proposed
in [29] and [26], respectively. Finally, the evolutive adaptation is a Go extension whose
implementation is described in Section 3.6.



Rosa et al. Journal of Internet Services and Applications (2020) 11:3 Page 8 of 23

Components and connectors are typed, have associated a CSP specification, and are
stored in the Architectural Library (see Fig. 1). Components have been defined according
to existing architectural patterns widely adopted to implement RPC-based middleware
systems [37]. Currently, we have defined eight different types of middleware components:

e (lient Proxy supports the same interface as the remote component. it is used for
remote invocations and serves as an entry point to the middleware. Client Proxy
translates local invocation’s parameters into parameters for the Requestor;

e Marshaller takes responsibility of (un)marshalling operations;

® Requestor constructs a remote invocation using parameters received from the Client
Proxy and sends it to a remote component. In practice, it works as a coordinator that
receives an invocation from the client, invokes a component to serialise it
(Marshaller), and forwards the serialised invocation to the Client Request Handler.
When the response is received from the remote component, it follows a reverse path
until reaching the client.

e Invoker receives a remote invocation from the Requestor, unmarshals it and
dispatches the invocation to a target remote component. Similarly to the Requestor,
it coordinates the middleware actions on the server-side through interacting with the
Server Request Handler, Marshaller, Lifecycle Manager and remote object.

¢ C(Client Request Handler (CRH) encapsulates communication activities at the
client-side. For example, the CRH uses the socket API of the operating system to
send/receive data to/from the server.

e Server Request Handler (SRH) encapsulates communication activities at the
server-side. Similarly to CRH, the SRH uses the socket API of the operating system to
receive/send data from/to the client.

o Lifecycle Manager implements lifecycle policies of remote components such as Static
instance, Pooling and Client-dependent instance.

e Lookup works as a naming service.

In addition to the components, middleware developers can use four different kinds of
connectors to define a software architecture in mADL: OneWay, RequestReply, OneToN
and NTol. OneWay mediates the interactions between components that simply send a
message to each other (no reply); RequestReply is used in the communication of a com-
ponent that makes a request and waits for a reply to/from another component; OneToN
serves to replicate a message from one sender to N receivers; and NTol receives messages

from several senders and forwards them to a single receiver.

3.3 Formal models
The lightweight formalisation is one of the essential characteristics of MidArch and gMi-
dArch. The formalisation consists of defining behavioural and probabilistic models in CSP
and PRISM, respectively. The CSP models describe how components/connectors belong-
ing to the framework behave while executes. Meanwhile, the probabilistic model is part
of the Non-Functional Properties (quality properties) associated with components and
connectors.

The behaviour specification is used to generate a state machine (graph) executed by at
runtime. In gMidArch, the CSP specification of a typical middleware component, namely
Marshaller, is defined as follows:
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datatype PROCNAMES = el

channel InvP, TerP : PROCNAMES

channel I_Process

Marshaller = InvP.el — > I Process — > TerP.el — > Marshaller

In this specification, Marshaller receives an invocation from an external component
el (invPel), processes it (i_Process), terminates the processing (terPel) by sending a
response to el, and behaves like Marshaller again.

In relation to the PRISM models [26], gMidArch uses the continuous-time Markov
chains (CTMC). The monitoring performed by the execution environment allows popu-
lating these models with rates measured while the middleware executes. Each architec-
tural element is specified through a module consisting of some local variables, and whose
values at any given time define the state of the module. For instance, the probabilistic
model associated with component Marshaller is defined as follows:

. module Marshaller
s:[0..2] init 1;

1
2
3
4. [invP] s=1 — > (s'=2);
5.  [invP] s=2 — > (s'=s);
6. [process] s=2 — > rate_marshaller : (s'=2);
7.  [process_last] s=2 — > rate_marshaller : (s’=1);
8. endmodule

The behaviour of Marshaller is described by four commands (Lines 4-7) and has been
partially inspired in [24]. The command in Line 4 is labelled with action invP to indicate a
possible engagement of this module to receive a request from an external component. The
guard s=1 is a predicate over variable s that indicates the state of the Marshaller. Given
that Marshaller is in the initial state (‘1) and action invP occurs, the component’s state
is updated (s’= 2). In Line 5, if a new request arrives while the component is processing
the previous one, do nothing. This kind of strategy in the specification avoids blocking
a component synchronised with Marshaller. As mentioned before, there is a rate asso-
ciated with each state update. In Lines 6 and 7, Marshaller processes requests with rate
rate_marshaller.

3.4 Richer subset of components
gMidArch has a set of new components related to the middleware domain, namely
MOM (Message-Oriented Middleware) components, and the execution environment.
Three MOM-related components have been included in the architectural library follow-
ing the generic publish/subscribe architecture introduced in [36]: Notification Consumer,
responsible for notifying subscribers about the arrival of new messages; Notification
Engine that implements operations to subscribe, unsubscribe and publish content; and
Subscription Manager, responsible for managing subscriptions. Using these new compo-
nents together with some existing ones (e.g., SRH and CRH), it becomes possible to use
gMidArch also to design adaptive publish/subscribe middleware systems in addition to
RPC-based ones as available in MidArch.

To implement the execution environment using software architecture elements, it was
also necessary to extend the architectural library also to include new components (non-
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middleware ones) whose functionalities are related to the elements of the execution
environment, namely MAPE-K loop, execution units and core.

MAPE-K components include a set of monitors (MAPEKEvolutiveMonitor,
MAPEKCorrectiveMonitor, MAPEKProactiveMonitor), an analyser (MAPEKAnalyser),
a planner (MAPEKPlanner) and an executor (MAPEKExecutor). These elements are
responsible for monitoring, making decisions about the need for adaptation, building
adaptation plans and executing them, respectively. Meanwhile, execution units (Execu-
tionUnit) host architectural elements and work as a manageable unit in such a way that
can be stopped, have the behaviour of its architectural element replaced and resumed
dynamically. Finally, the Core is responsible for forwarding adaptation commands
straight to the units.

3.5 Customised execution environment

As mentioned before, the execution environment was re-implemented in Go using soft-
ware architecture principles in a similar way to the adaptive middleware. It is worth
observing that in the Java version (MidArch), only the middleware was defined using
software architecture abstractions. The use of these abstractions facilitates both the
customisation at development time and adaptation at runtime of the environment.

As shown in Fig. 1, Creator generates a customised software architecture (ADL EE) of
the execution environment from the middleware software architecture. The customisa-
tion means to define the elements of the MAPE-K loop and execution units needed to
execute the middleware. For example, if the middleware requires a given type of adapta-
tion, only execution elements needed to support it make up the execution environment
architecture.

Figure 3 shows a software architecture (MiddlewareClient) and its respective cus-
tomised execution environment (EEMiddlewareClient). MiddlewareClient is the client-
side middleware software architecture (based on the middleware client architecture
defined in Remoting Patterns [40]) and has four components (namingProxy, appProxy,
requestor and crh), two connectors (TA and TB), and needs an Evolutive adaptation. The
generated execution environment includes Core, MAPE-K elements, six execution units
(one for each element of the middleware architecture) and six connectors (¢1, t2, t3,t4, t4,
t5 and £6).

As mentioned in the previous section, Core is responsible for coordinating the interac-
tions between the MAPE-K elements and the execution units. Its behaviour consists of
firstly initialising all execution units, waits for adaptations commands from the MAPE-K
executor, and then executes then over the units.

The MAPE-K elements have been implemented as architectural components. It is
worth observing that the Monitor function was subdivided into three parts: corrective
monitor, proactive monitor and evolutive monitor. The corrective monitor was initially
presented in [29], and the proactive monitor is described in [26]. The evolutive monitor
consists of checking for new plugins in the Plugin repository and then sends information
to the Analyser continuously.

Finally, each execution unit traverses the graph (state machine) whose nodes are the
states of the architectural element, and the edges are labelled with actions executed by it.
Algorithm 1 is implemented by the execution unit to perform this task.
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This algorithm essentially traverses the graph whose nodes are the states of a compo-
nent/connector, and the edges are labelled with actions executed by it. Given a node, it
is necessary to get the node’s adjacent edges. If there is a single adjacent node (Line 5),
it means that the next action to be executed is the one associated with the edge (Line 6).
Otherwise, there is a branch in the graph that indicates the use of the choice or parallel
operator (Line 8). In this case, function Choice (Line 9) must select an edge from a list
(edges). The next node depends on the selected edge (Line 11). Finally, in both cases, the

action associated with the edge is executed (Line 13).

The implementation of function Choice

in Go is shown in the following:

1: func Choice(chosen *int, edges [Jwgraph.Edge) {

2: cases := make([]Jreflect.SelectCase, len(edges))
3: var value reflect.Value
4. fori:=0;i < len(edges); i++ {

Page 11 of 23
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5: cases[i] = reflect.SelectCase{Dir:

6: reflect.SelectRecv, Chan:

7: reflect.ValueOf(*edges[i].Action.P2)}
8: }

9: *chosen, _, _:= reflect.Select(cases)

10:}

Algorithm 1 Execution of the State Machine
1: function EXECUTESTATEMACHINE(graph)
node =0

2
3 while true do

4 edges = AdjacentEdges(graph,node)

5: if len(edges) = 1 then > MidArch
6 action = Event(edges[0])

7 node = NextNode(edges[0])

8

9

else > gMidArch
chosen = Choice(edges) > Function Choice (Go)
10: action = Event(edges[chosen])
11: node = NextNode(edges[chosen])
12: end if
13: Execute(action)
14 end while

15: end function

The input parameters are a pointer to be set when a case is selected and the set of
selectable edges, e.g., events a and b shown in Fig. 2. In Lines 2-8, this implementation
uses reflection to create a set of case clauses (events) and the select statement that blocks
until one of the events occurs (Line 9).

It is worth observing that the Go select statement lets a goroutine waits on multiple
communication operations (events). The statement blocks until one of its cases can exe-
cute, then it runs that case. It chooses randomly if multiple cases are ready. The select
statement made viable the implementation of an execution unit capable of executing the
state machine shown in Fig. 2b. The use of reflection was also essential because the engine
does not know the branches (2 and b) statically and needs to define them at runtime. The
list of branches (events) is created while the unit is transversing the state machine.

3.6 Evolutive adaptation
As soon as the execution environment starts the execution of the architecture, the adap-
tation manager (see Fig. 3) monitors it. Monitored data are forwarded to the analyser that
decides for an adaptation. If an adaptation is necessary, the planner creates an adaptation
plan and then forwards it to the executor (E) that performs the actions defined in the plan.
As mentioned in Section 2.2, MidArch already implemented corrective and proac-
tive adaptations. gMidArch extends the adaptation strategies available in MidArch, and
includes a new kind of adaptation, namely evolutive adaptation. Evolutive adaptations
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occur when a new version of an existing component/connector (plugin) becomes avail-
able. After deployed, any architectural component can be potentially replaced as soon as
a new plugin is available.

Whatever the adaptation strategy, all of them typically demand the replacement of a
running element by another one. In Go, the replacement consists of loading a new plu-
gin (new version of the architectural element), stopping the old one and starting the new
plugin. Due to the strategy of using CSP annotations associated to components and con-
nectors, two additional steps are performed: the checking of behavioural compatibility
between the old and new plugins and the verification if the new component injects an
undesirable behaviour in the architecture.

To understand how the plugin replacement works and facilitates the evolutive adapta-
tion, it is necessary to observe that each architectural element (component and connector)
has a non-plugin implementation (loaded statically when the architecture is deployed)
and can have a plugin version (loaded dynamically). Mechanism similar to ones found in
some existing languages, Go plugins allow developers to implement loosely coupled pro-
grams whose components can be dynamically loaded and bound at runtime. In practice, a
plugin becomes an independent component whose development and lifecycle is entirely
independent of other elements.

Figure 4 shows the replacement process. In parallel to the execution of the software
architecture, the MAPE-K components start to run. Then, as soon as a new plugin is avail-
able (1), the evolutive monitor detects its presence (2) and then passes this information to
the general monitor (3) who contacts the analyser (4). It is worth observing that the plugin
also has a CSP behaviour (and its respective state machine) in a similar way to the non-
plugin component. Next, the analyser checks the compatibility of the current behaviour
and the behaviour of the new plugin. If they are compatible, the analyser generates a new
CSP specification of the software architecture including the behaviour of the new plugin.

receiver'
(new plugin)

Execution Environment

Plugin
Reposilto

C_F 1 e

alyser f--
: ® : unit1

@ @ : : :""' (sender) W

H @ E . U
@ [Eeosor}-+ | e G0
e

S}un uopndaxy

_] unit3
(receiver)

@
N-3dVIN

- > EvolutiveMonitor

Fig. 4 Steps of the evolutive adaptation
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If the specification has not an undesired behaviour like deadlock, it means that the new
plugin can be deployed. Next, the analyser informs the planner about the new plugin (5).
The planner creates an adaptation plan that needs to be executed to carry out the recon-
figuration. The plan is passed to the executor (6). The executor notifies the core (7) that
stops the execution unit, loads the new state machine and discards the old one (8).

As mentioned before, the replacement process may occur continuously. However, some
points must be observed that are not apparent in Fig. 4. Firstly, the detection of a new plu-
gin is simple, as they are stored in the repository. From time to time (configurable), the
monitor checks the repository for new plugins. Secondly, two components are compati-
ble if they have the same type (Go checking) and if the behaviour of the new plugin refines
(in a particular semantic model) the behaviour of the old one (CSP checking). Using
FDR4° (The CSP Refinement Checker), this checking is performed through an assertion
like assert B1 [ T = B2, where Bl and B2 are the behaviours of the new and old plugins,
respectively. Thirdly, the behaviour replacement only occurs when the old element is in
its initial state that works as a quiescent state, i.e., no pending requests.

It is worth observing that the state machine execution only starts in an initial state and
whatever the execution flow it returns to the beginning state. This behaviour is guaran-
teed as all CSP specifications associated with architectural elements are recursive, i.e.,
they have a general structure like B =< dosomething > — > B. Hence, if an element is in
its initial state, no pending request or reply exist for this particular element. However, this
fact does not mean that a client’s remote request cannot be pending while a middleware
element is replaced, for example. Some middleware elements are more time-sensitive to
this strategy. For example, suppose that the CRH (see Section 3.2) is the element to be
replaced. CRH is responsible for opening a connection, sending the request, receiving the
response and closing the connection. In the approach adopted in gMidArch, this element
cannot be replaced if a connection is opened.

Fourthly, only stateless elements can be replaced in the current version. Fifthly, each
execution unit and the MAPE-K element is defined as a goroutine (lightweight threads)
that communicates through synchronous channels. Fifthly, solely the architectural ele-
ment whose behaviour is replaced needs to be stopped. Finally, it is worth observing
that the Go plugins need to implement two additional functions in relation to its non-
plugin version: GetTypeElement() and GetBehaviourExp(). They return the plugin type
and behaviour expression (CSP) of the plugin, respectively. Those functions are necessary
for the type and behavioural compatibility checks mentioned before.

3.7 Goimplementation details
All elements of the execution environment were implemented as goroutines, while they
were Java threads in MidArch version. Goroutines have some characteristics like faster
startup time than Java threads and a smaller number of OS threads as there is not a 1:1
mapping between them. Goroutines come with built-in primitives to safe communica-
tion between them, the so-called channels. The communication between elements of the
execution environment occurs through non-buffered Go channels.

A key aspect to understand how the software architecture is executed in practice is

to observe the relationships between goroutines, channels, CSP specifications and state

Shttps://www.cs.ox.ac.uk/projects/fdr/
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func (Element) InvR(invR *‘chan messages ge, msg *messages.SAMessage) {
*invR <~ *msg / channel invR
unit1
(client) unit2 (t) unit3 (server)
invR InvR B InvP invP invR InvR E] InvP invP i
E__—j( R TerR TerP TerR TerP t - j
e erl
f IZ] terP teR

func (Element) TerR(terR *chan messages.SAMessage, msg *messages.SAMessage) {
*msg = <-*terR

}

Fig. 5 Goroutines, channels and state machines

machines (graphs). As mentioned in Section 3.1, the CSP specification that describes the
behaviour of each architectural element (set of temporally ordered actions) is translated
into a state machine whose edges are labelled by actions executed by the element.

As presented in Section 3.1, there are two kinds of actions, namely internal and external
actions. There is a 1:1 mapping between external actions performed by the architec-
tural element and the Go channels. Hence, when the graph that defines the behaviour
of the architectural element is traversed, each external action associated with the edge
has a function whose execution is to send/receive something via the channel. Four dif-
ferent external actions are allowed in gMidArch: invR and terR to send a request and
receive a response from an external element, respectively; and invP and terP to receive a
request and send a response to another element, respectively. Meanwhile, each internal
action has a Go function associated that depends on the functionality implemented by
the architectural element.

In Fig. 5, as execution unit unitl transverses the state machine, the actions within the
edges are executed. The execution of the first action (/nvR) means to invoke function InvR
that places a message (msg) into channel invR. Channels invR and invP are shared between
unitl and unit2 and when unitl executes InvR and unit2 executes InvP, goroutines unitl
and unit2 synchronise and the message moves from unitl to unit2. The same process
repeats in relation to other units and actions.

4 Evaluation

The objective of this evaluation is to compare the performance of a distributed appli-
cation built atop RPC/MOM implementations of gMidArch with existing middleware
systems. Two widely adopted non-adaptive commercial middleware systems were consid-
ered, namely gRPC” and RabbitMQ8. Meanwhile, a similar comparison was also carried
out with a non-commercial RPC-based adaptive middleware implemented in Haskell [33].
Table 2 summarises the scenarios of evaluation that have been investigated.

It is worth observing some facts about these comparisons. Firstly, to the best of our
knowledge, there are no commercial adaptive middleware systems. Secondly, these eval-
uations exercise the two different middleware models that can be implemented using
gMidArch: RPC-based and MOM. Thirdly, it is important to evaluate the performance of
non-adaptive versions of gMidArch because it helps to show the viability of their use even

7https://grpc.io/
8https://www.rabbitmq.com
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Table 2 Scenarios of comparison

gMidArch

Scenario Flavour Adaptation Existing Middleware
#1 RPC Disabled gRPC

#2 RPC Enabled gRPC

#3 MOM Disabled RabbitMQ

#4 MOM Enabled RabbitMQ

#5 RPC Disabled AFirM

#6 RPC Enabled AFirM

in scenarios in which adaptation is not mandatory. Finally, the comparison with an adap-
tive middleware that provides a similar kind of adaptation (evolutive) is an ideal scenario
as both middleware systems become very comparable.

The metric used in the experiments was the response time, which is measured on the
client side and refers to the time elapsed between the client makes a request and receives a
response. As the focus is on the middleware, the remote function (namely fibo(n)) invoked
by the client is a simple one that recursively calculates a Fibonacci sequence number.
In practice, each request passes through the client’s side middleware (see configuration
shown in Section 3.2) and its respective server side before is executed remotely. The appli-
cation response also passes by both middleware configurations (client and server sides).
While simple, the Fibonacci application uses all components and connectors of the mid-
dleware (similar to more complex applications), which is a fundamental requirement in
the evaluation. Meanwhile, the application is also easy to be deployed. Finally, despite its
simplicity, the Fibonacci can be highly demanding in terms of processing, e.g., n >34.

All elements of the application and middleware flavours were deployed in three official
Docker containers for Go: a container with the client, a container having the server and
a container executing the gMidArch naming service. The containers run on a MacBook
Pro with a 2,9 GHz Intel Core i7, 8 GB RAM, and MacOS Catalina, version 10.15.2.

In the experiments, several paramters were varied: the number of requests performed
by the client (1.000, 2.000, 4.000, 8.000, 10.000, 50.000 and 100.000); versioning interval
(1s, 10s, 300s), which means the time between updates of the middleware component
being replaced; fibonacci number (1, 34 and 36); and middleware flavours (RPC/MOM
gMidArch, gRPC, RabbitMQ and AFirM).

Figure 6 shows the results'? of the experiments to compare the performance of gMi-
dArch and gRPC varying the Fibonacci number (1 and 36) and number of requests (1.000,
10.000 and 100.000). In this comparison, it is possible to observe that the performance of
gMidArch is 20.77% better than gRPC when the remote operation has a quick response
(Fibo(1)). However, these results become inverted when the remote operation is very
processing-intensive (Fibo(36)). In the latter, it takes around 107 ms to complete, i.e.,
around 500 times longer than the former. In this case, gMidArch is 0.64% slower than
gRPC. It is worth noticing that the implementation of Fibonacci is the same in both
cases. A possible reason for this behaviour is the fact that gMidArch is more processing
intensive due to the number of Go routines created. When the Fibonacci computation
becomes more processing-intensive (Fibo(36)), there is a higher CPU contention between
the Fibonacci and the middleware.

“https://hub.docker.com/_/golang/
0https://github.com/gfads/midarch/tree/nelson/evaluation
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Fig. 6 Scenario #1 - gMidArch (RPC) X gRPC

In the next scenario, Scenario #2, the RPC gMidArch implementation was configured
to allow runtime adaptations. In practice, the Adaptability of the middleware architec-
ture was set to Evolutive (see Section 3.2). As a consequence, the MAPE-K feedback loop
becomes active while the middleware executes and triggers adaptations. To make possi-
ble the execution of this kind of experiment, a versioning injector was also implemented.
It executes in parallel to the middleware and generates a new version of the element being
adapted from time to time (versioning interval). In particular, in this scenario, the ver-
sioning interval was set to 1s, which means that a new adaptation is triggered every one
second.

Figure 7 shows the results of some experiments executed in this scenario. The per-
formance of gMidArch is still better than gRPC in the case of Fibo(1), but there was a
reduction from 20.77% (Scenario #1) to 2.93% (Scenario #2). Similarly to the previous sce-
nario, the performance of gRPC is also better (10.84%) than gMidArch when the remote
function is Fibo(36). The gain of gRPC increases from 0.64% to 10.74% in this case. The
versioning injector (not existing in the previous scenario) responsible for generating new
plugin versions (every 1s) helps to justify this deterioration partially. Additionally, as the
experiments for invoking Fibo(36) are much more longer than ones of Fibo(1), the number
of adaptations in the former is much more higher than the latter.

In order to evaluate the performance of a MOM implemented using gMidArch (gMi-
dArch MOM), Scenario #3 shows a comparison of this middleware with RabbitMQ. In
this scenario, the same client/server application used in Scenarios 1 and 2 was fully re-
implemented atop gMidArch MOM and RabbitMQ. As the RabbitMQ is not adaptive, the
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Fig. 7 Scenario #2 - Adaptive gMidArch (RPC) X gRPC
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Fig. 8 Scenario #3 - gMidArch (MOM) X RabbitMQ

adaptation of the gMidArch MOM was turned off in this scenario. In both implementa-
tions, two queues are used in the client and server communication: request and reply. The
client publishes a remote invocation in queue request and subscribes to replies in queue
reply. Meanwhile, the server is a subscriber of queue request and publishes responses (the
result of the calculation) in queue reply.

Figure 8 shows some results obtained in this scenario. Similarly to the previous
experiments with gRPC, the performance of gMidArch MOM is 2.64% better than the
commercial middleware (RabbitMQ) in the case of Fibo(1). The only difference is the fact
that the gain of gMidArch MOM was reduced from 20.77% (gMidArch RPC) to 2.64%,
which may indicate that the MOM implementation of gMidArch is less performative than
the RPC one. At the same time, the performance of RabbitMQ is 6,09% better than gMi-
dArch MOM when the remote invocation is more processing-intensive (Fibo(36)). This
result is also compatible with Scenario #1, in which the CPU contention helps to explain
this behaviour.

In the next set of experiments, Scenario #4, an adaptive version of gMidArch is com-
pared with RabbitMQ. An injector generates a new version of the Invoker every second
like in Scenario #2.

The results presented in Fig. 9 show that the performance of RabbitMQ is 27.91%
(Fibo(1) and 19.82% (Fibo(36) better than the adaptive version of the MOM gMidArch.
This result is also influenced by the CPU contention mentioned before. However, the dif-
ference in performance also shows that the adaptation process in the MOM gMidArch is
more costly in terms of time.

Unlike the previous scenarios, Scenario #5 shows a comparison with an adaptive mid-
dleware (AFirM). AFirM is an RPC-based middleware implemented in Haskell that
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Fig. 9 Scenario #4 - Adaptive gMidArch (MOM) X RabbitMQ
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supports evolutive adaptations. Then, the Fibonacci client/server application was re-
implemented in Haskell. Similarly to the previous scenarios, the application was executed
having different configuration parameters.

Figure 10 shows the results obtained in this scenario. In the first case (Fibo(1)), the
performance of gMidArch is 120.03% better than AFirM, which is a very good result. In
the second case (Fibo(36)), something interesting happens. The performance of AFirM
is much better than gMidArch and is very similar in both cases (Fibo(1) and Fibo(36)).
This fact reveals that the Fibonacci implementation in Haskell is much more efficient
than one in Go. In particular, this solution uses bitwise operations. As a consequence, the
response time in AFirM is practically stable whatever the Fibonacci number. However, it
worth observing that the behaviour of gMidArch, whose response time increases when
the remote invocation changes from Fibo(1) to Fibo(36)), is similar to the behaviours of
gRPC and RabbitMQ as shown in the previous scenarios.

In Scenario 6, the evolutive adaptation is active in gMidArch and AFirM. In both cases,
a new version of a middleware component is generated every 1 second by a versioning
injector. Figure 11 shows that the performance of gMidArch is better than AFirM in the
case of Fib(1). The gain of gMidArch in this adaptive scenario increases from 120.03%
(Scenario #5) to 535,31%. Similarly to Scenario #5, however, AFirM has a better perfor-
mance when the remote invocation is Fibo(36). As mentioned before, this significative
difference is related to the efficiency of the implementation of Fibonacci in Haskell.

Finally, it is worth observing that the evaluation of gMidArch could also be focused on
the development framework (mADL and library architectural elements). The assessment
of the framework could be done by (1) evaluating the usability of mADL, (2) analysing the
completeness of the architectural elements for implementing different middleware mod-
els, or (3) even measuring the programming effort for developing adaptive middleware
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systems using the proposed framework, e.g., in a simple way, to count the number of lines
of code required to implement a middleware with/without gMidArch.

While this kind of evaluation matters, to compare the performance of a new middle-
ware with existing solutions is usually one of the first steps for deciding to use or not a
middleware. Furthermore, performance evaluation is often very objective, depends only
on code instrumentation to be done, and one of the criteria commonly used to compare
middleware systems [8, 39].

5 Related work

The development of adaptive middleware is not a recent topic and pioneer works based
on architectural reflection are widely known [4, 6, 17]. Meanwhile, the use of the MAPE-
K feedback loop to manage the middleware adaptation is something very recent [23, 25,
29, 42]. Unlike the first group, gMidArch is founded on software architecture principles
as enabling technology for adaptation.

Solutions to facilitate the implementation of middleware systems are not recent. Mid-
dleware frameworks such as Quarterware [34], PolyORB [38] and Arcademis [22] were
pioneers in this topic. Even sharing the idea of an implementation framework, these
solutions have neither formal elements nor focus on adaptive middleware.

Following the same idea of developing middleware by combining existing middleware
elements, Issarny [15] and Costa [7] focus on composing service specifications to define
software architectures and combining building blocks (metamodels) to create middleware
configurations, respectively. Unlike gMidArch, they do not address adaptive issues, use
formal techniques nor covers implementation and execution activities.

Moving to the integration of formal verification as proposed by gMidArch, Caporus-
cio [5] defined a methodology to simplify the verification of behavioural properties of
middleware-based software architectures. However, the formalisation is restricted to the
software architecture, and it does not cover adaptation issues neither is used at runtime.

Apart from the middleware community, Rainbow [12] is a framework that provides
supporting mechanisms for self-adaptation and a language (Stitch) that can be used
to codify adaptation techniques. It implements a MAPE-K feedback loop to manage
and trigger the adaptation when a structural property is not satisfied. gMidArch also
checks behavioural and quality properties in addition to structural ones. Furthermore,
gMidArch is a middleware-specific framework and uses lightweight formalisation.

The combination of formal methods and the adaptation mechanism has a variety of
faces: incorporation of formal methods into a reflective component model to verify
whether a runtime adaptation would violate structural constraints specified in ALLOY
[41]; use of Petri nets to formally check if a given configuration complies with functional
and non-functional properties of the system [10]; use of the automata-based language
Heptagon/BZR (combined with a transactional middleware) in the feedback loop of the
adaptive middleware [35]; and the use of CADP tooling [27] and process mining [29] to
trigger adaptations, and FDR to verify properties after adaptation of middleware systems.
While the first three approaches use formal methods, they have not focused on taking
benefits of formalisms while the middleware is being developed. Meanwhile, the last set
of works has been extended in this paper in some ways: the use of software architecture as
development and runtime artefact, and the definition of PRISM models to check quality
properties.
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Real-time reconfiguration based on the use of formal methods has been adopted in
systems immersed in environments inherently dynamic, like cyber-physical systems.
For example, [11] uses Petri Nets and [3] adopts constraint LTL over locks (CLTLoc).
Although these works use formal methods, their focus is on real-time applications hav-
ing severe time constraints. Additionally, gMidArch also proposes a solution for helping
adaptive middleware developers.

Finally, existing solutions also focus on verifying particular properties associated
with fault-tolerance while the system executes [2]. Although the proposed environment
(MAFALDA) monitors and identifies a violation of assertions, it does not act to fix
the problem. Additional differences to gMidArch refer to the absence of the use of for-
mal models focus on middleware specific issues and lack of a middleware development

framework.

6 Conclusion and future work

Our unique contributions in this paper include the proposed architecture description
language (mADL), the possibility of using an extended set of CSP operators to specify
the behaviour of architectural elements, a richer set of architectural elements associated
to the execution environment and MOM-based solutions, the possibility of customise
the execution environment according to the middleware built atop it, and the evolutive
adaptation. The extensive use of goroutines, channels and plugins also led to a very effi-
cient implementation of the middleware whose performance is comparable to gRPC and
RabbitMQ in the evaluated scenarios.

While the proposed extensions make advances on the original solution (MidArch), some
decisions and paths took in gMidArch could be adopted for adaptive middleware systems
in general. The use of software architecture concepts (component, connector, configu-
ration, architectural style and architecture description language) serves as an interesting
enabling technology for structuring the middleware whatever its implementation lan-
guage or middleware model. gMidArch explicitly separates the adaption logic from the
middleware and uses MAPE-K concepts to structure the adaptation manager. Adaptive
middleware developers could use a similar approach as MAPE-K is a kind of de facto stan-
dard for implementing adaptive software systems. Finally, experiences of MidArch and
gMidArch are movements to adopt formal methods beyond their traditional utilisation,
i.e., as a specification tool only. gMidArch uses them effectively at execution time. As a
consequence of this attempt is the possibility of advances in the development of safer
adaptive middleware systems.

Considering the current state of the solution, one interesting future work is to allow
dynamic changes in the execution environment, e.g., to replace the analyser to use
machine learning techniques instead of PRISM models. Also, concerning adaptation, the
proposed executor should be designed to allow the adaptation of simultaneous compo-
nents/connectors, or even an entire middleware layer. A more elaborated experimental
evaluation of the solution is also necessary: to work with applications having concur-
rent accesses to the middleware and replicated services; to better understand the Go’s
overhead for plug-in replacement; and to understand how the verification scales with
the increase of the middleware architecture. Finally, as a framework, it is also interesting
to evaluate its usability and how it reduces the programming effort to implement a
middleware.
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