

Page 1 of 3

Mathematical Challenge December 2017
Search algorithms for artificial intelligence systems

References

 [1] Russell, Stuart, Peter Norvig, ”Artificial Intelligence. A modern approach." Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs 25 (1995): 27.

Description

Artificial intelligence is nowadays a buzzword and various distortions of its original meaning are
common. Indeed, even the original and technical meaning is not univocal. AI may refer to the
development of artificial systems showing either human like or rational behavior. Furthermore, it can
be distinguished between systems that try to achieve this via either human-like or not human-like
internal structures.

Search methods are algorithms that efficiently explore the space of possible system states with the
aim of either finding an acceptable state (defined by a set of constraints) or an optimal state (defined
by a cost function and possibly some constraints). Search methods are therefore a crucial ingredient
of AI systems trying to achieve rational behavior via a not necessarily human-like internal structure.
In particular, search methods are at the core of problem solving agents with rational behavior.

In general a search problem is defined w.r.t.

 state space: describing the state of the system

 action space: listing decisions that can be made to influence the system

 successor function: specifying how the state changes given an action

 cost function: quantifying the attractiveness of selected paths

 target state(s): explicitly listed or implicitly identified by some checks.

Search methods try to identify a solution, i.e. a sequence of actions, defining a path of states
connecting the initial state to the target state(s), or an optimal solution, i.e. a solution with lowest
costs.

While the standard example where search methods are applied is route planning, there are a
multitude of other applications like automatic assembly sequences, industrial product design and
others.

We will here follow the reference [1] and assume:

 The states of the system are discrete and observable

 The successor function is known and deterministic

 The target space is known and fixed

Page 2 of 3

Under these assumptions the solution of the search problem is a fixed sequence of actions, i.e. given
such environment and problem, the search algorithm provides a sequence of actions to be
implemented that ensure the achievement of the given goal (note that the search method is applied
during the planning phase which is completed before moving to the execution phase).

To simplify our description we further assume that the cost of moving from one state to another is
constant. In this case, costs match path lengths. Some algorithms relying on path length can be
adapted to handle not constant costs. Note, however, that in the general case very long paths with
limited costs may exist and properties of an algorithm may be relevantly different after adaptation to
general costs.

The performance of the different algorithms is characterized by the following properties:

 Completeness: is the algorithm able to find a solution if this exists?

 Optimality: if many solutions exist, does the algorithm provide the optimal one?

 Time-complexity: how long does the algorithm take to find a solution?

 Space complexity: how much memory does the algorithm require?

The general scheme of search methods consists in

 keeping a list (queue) of potential paths initialized with the length one path consisting of just
the initial state

 select a path from the queue and replace it with all the paths corresponding to the selected
path followed by the outcome of a possible action

 perform this until the target is reached

Breadth-first search (BFS) is a complete algorithm which is generally applicable and ensures
optimality (when adjusted for not constant costs, is known as uniform cost search). It consists in
selecting for expansion the path in the queue that has the shortest length. BFS, while ensuring

optimality, is not time and especially not memory efficient indeed the costs are exponential 𝑂(𝑏𝑑)
(assuming constant branching factor 𝑏, optimal solution depth of 𝑑 and equal step costs) .

Two possible ways to reduce the memory requirements are: iterative deepening search (IDS) and
bidirectional search (BS). In IDS a maximum depth 𝑑𝑛 is increased at each iteration 𝑛. For each
iteration a full path search is performed by selecting from the queue the path with longest length but
lower than 𝑑𝑛. BS on the other side applies two BFS searches simultaneously, one from the initial
state forwards and one from the target state backwards. IDS memory cost is 𝑂(𝑏𝑑) and the one of

BS 𝑂(𝑏𝑑/2). However IDS performance strongly depends on the adequacy of the sequence 𝑑𝑛 and

its time complexity is still 𝑂(𝑏𝑑), whereas BS has time complexity 𝑂(𝑏𝑑/2) but is not well suited if the
target is implicitly defined.

To decrease time complexity and increase the search algorithm efficiency in general, we have to
exploit some additional information about the problem besides the simple problem formulation. I.e.
we have to move from uninformed search strategies like BFS, IDS and BS to so called information
search strategies.

A particular class of such methods consists in heuristic function based search strategies. These
leverage problem knowledge casted in the form of a heuristic function ℎ(𝑖) which estimates the

minimal distance from the state 𝑖 to the target. Replacing in BFS the length of each path 𝑙(𝑝𝑎𝑡ℎ) with
𝑓(𝑝𝑎𝑡ℎ) = 𝑙(𝑝𝑎𝑡ℎ) + ℎ(𝑝𝑎𝑡ℎ(𝑒𝑛𝑑)) (where 𝑝𝑎𝑡ℎ(𝑒𝑛𝑑) is the current final state of the path), we obtain

the 𝐴∗ search algorithm. Assuming that the heuristic has a relative error of 𝜖 = (ℎ − 𝑙)/𝑙 the time

complexity becomes 𝑂(𝑏 𝜖𝑑).

The 𝐴∗ search algorithm has optimality guarantees provided that the heuristic function ℎ is consistent,

i.e. for every nodes 𝑛 and 𝑛′ and path 𝑛 → 𝑛′

ℎ(𝑛) ≤ 𝑙(𝑛 → 𝑛′) + ℎ(𝑛′)

Page 3 of 3

Consistent heuristics can be obtained a.o. in the following two ways:
a. ℎ(𝑛) = 𝑙𝑟𝑒𝑙𝑎𝑥𝑒𝑑(𝑛 → 𝑡𝑎𝑟𝑔𝑒𝑡)

b. ℎ(𝑛) = 𝑙(𝑛 → 𝑠𝑢𝑏𝑡𝑎𝑟𝑔𝑒𝑡)

where 𝑙𝑟𝑒𝑙𝑎𝑥𝑒𝑑 is the actual distance from the target for a “relaxed” problem (where the allowed set
of actions is a superset of the original one) and a 𝑠𝑢𝑏𝑡𝑎𝑟𝑔𝑒𝑡 is a state just partially satisfying the
target conditions.

The 𝐴∗ search algorithm can be modified exactly as the BFS was modified into the IDS to improve

memory efficiency, obtaining the iterative-deepening 𝐴∗. However, there exist better alternatives like
the simplified memory-bounded 𝐴∗ (SMA). SMA proceeds as 𝐴∗ until the memory bound is reached,
at that point it drops the path with the highest f-value from the queue. Note however that SMA may
be forced to regenerate dropped paths when the current best path length becomes larger than the
f-value of the previously dropped ones. Therefore, time complexity for hard problems may be

relevantly higher than the one of 𝐴∗. Finally, if the solution is not within a length smaller than the
memory bound, it will not be reached.

Questions:

 [Q1] Show that for consistent heuristics, 𝐴∗ search guarantees optimality

 [Q2] Consider the 8-puzzle, which consists of a 3×3 board with eight numbered tiles and a
blank space. A tile adjacent to the blank space can slide into the space. The object is to reach
a specified goal state:

 (source [1])
Determine two heuristics of the type

a. ℎ𝑎(𝑛) = 𝑙𝑟𝑒𝑙𝑎𝑥𝑒𝑑(𝑛 → 𝑡𝑎𝑟𝑔𝑒𝑡)

b. ℎ𝑏(𝑛) = 𝑙(𝑛 → 𝑠𝑢𝑏𝑡𝑎𝑟𝑔𝑒𝑡)
Compare the time and memory complexity of the following approaches

a. BFS
b. IDS

c. 𝐴∗ based on ℎ𝑎
d. 𝐴∗ based on ℎ𝑏
e. 𝑆𝑀𝐴 based on ℎ𝑎

f. 𝑆𝑀𝐴 based on ℎ𝑏
How do the complexity scale considering a 15-puzzle (4x4 board)

We look forward to your opinions and insights.

Best Regards,

swissQuant Group Leadership Team

